
Hand-tracked 3D Data Selection of
Point Clouds in XR

Master's Thesis

Master of Science in Engineering with
Specialisation in Computer Science

Institute of Interactive Technologies

Author
Luca Fluri

luca.fluri@fhnw.ch

Advisor
Prof. Dr. Arzu Çöltekin

arzu.coltekin@fhnw.ch

Expert
Dr. Stefan Arisona

robot@arisona.ch

Brugg-Windisch
August 23, 2024

mailto:luca.fluri@fhnw.ch
mailto:arzu.coltekin@fhnw.ch
mailto:robot@arisona.ch

Abstract

Three-dimensional data is crucial in fields like scientific visualization, medical
imaging, and astronomy, yet effective 3D selection remains a challenging and
unsolved problem. Traditional methods, primarily limited by 2D interfaces, often
lack the precision and flexibility required for accurate 3D selection. Additionally,
existing 3D techniques are limited to simple selection volumes and must be
optimized for point clouds, further complicating the process.

This project addresses these challenges by developing a GPU-based selection
approach using Signed Distance Fields (SDFs). This approach enables efficient,
real-time selection of near-arbitrary subsets of point clouds in XR environments.
The solution is implemented in Unity and integrates novel and existing selection
techniques, validated through a user experiment. Results revealed significant
performance differences between selection techniques, task complexities, and
point clouds. Participants favored brushing modes over direct selection methods —
a preference confirmed by quantitative data. This research bridges the gap
between traditional 2D methods and XR, offering a robust and efficient approach
to 3D data selection.

Keywords:
Point Clouds • Data Selection • XR • Hand Tracking • Signed Distance Fields • User
Experience

II

Acknowledgments

I would like to express my deepest gratitude to my advisor, Prof. Dr. Arzu
Çöltekin, for her invaluable guidance, support, and encouragement throughout
this project. Her expertise and insights have been instrumental in shaping this
work, and I am truly grateful for the opportunity to learn from her.

I would also like to thank all the proofreaders who took the time to review my
work and provide constructive feedback. Your careful attention to detail and
thoughtful suggestions have greatly improved the quality of this thesis.

A special thanks goes to my family for their unwavering patience, understanding,
and support during this journey. Your belief in me has been a constant source of
motivation, and I could not have completed this work without your love and
encouragement.

III

Table of Contents

1 Introduction .. 1
2 Related Work ... 3

2.1 Extended Reality ... 3
2.2 Point Cloud Rendering .. 4
2.3 Signed Distance Fields ... 6
2.4 3D Selection Techniques ... 7
2.5 User Studies ... 8

3 Prototype ... 10
3.1 Methods and Concept .. 10
3.2 Implementation ... 12

3.2.1 Selection Handling ... 13
3.2.1.1 SDF Generation ... 14

3.2.2 Point Cloud Rendering .. 15
3.2.3 User Interaction ... 17

3.2.3.1 Hand Menu ... 17
3.2.3.2 Point Cloud Transformations ... 18
3.2.3.3 Selection Techniques .. 19

4 Evaluation Methods .. 22
4.1 Computational Performance .. 22
4.2 User Experiment ... 22

4.2.1 Participants .. 23
4.2.2 Materials ... 23

4.2.2.1 Tasks .. 25
4.2.3 Procedure .. 27

4.2.3.1 Data Collection and Resesarch Design .. 27
4.2.3.2 Data Diagnostics and Analysis .. 28

5 Results ... 29
5.1 Computational Performance .. 29
5.2 User Experiment ... 31

6 Discussion .. 44
6.1 Limitations ... 48
6.2 Future Work ... 49

7 Conclusion .. 52
Bibliography .. 54
Appendix ... 64

Source Code ... 64
Evaluation ... 64

Results ... 64
Pre-Questionnaire .. 64
Post-Questionnaire .. 66

IV

Introduction

1 Introduction

Three-dimensional data is becoming increasingly important in various fields, such as
scientific visualization, medical imaging, or astronomy [1, 2]. The ability to interact
with and select specific parts of volumetric data is crucial for exploratory data analy-
sis, research, and annotation tasks. In parallel, recent advancements in XR (Extended
Reality) have enabled more intuitive and immersive ways to interact with data. Specif-
ically, hand-tracking technology has seen massive leaps in recent years, allowing for
more natural interactions with virtual objects.

Current state-of-the-art solutions for 3D data selection are often limited to classical
2D applications [3–5] that require the user to view 3D data in a 2D space. While this is
possible, and 2D solutions are powerful, they often rely on complex interfaces and are
computationally expensive, making real-time applications impractical. Additionally,
they lack the intuitive and immersive experience that XR can provide. Changing the
user’s viewpoint in 2D space can be cumbersome and time-consuming. It would be
much more natural and direct in a 3D XR environment. The added depth information
and, therefore, less occlusion of data in 3D additionally make the data exploration and
selection process more intuitive, faster, and more accurate [6, 7]. Products that offer
3D selection of point clouds do not exist in XR, but notable research work has been
done in this area (see chapter 2). At this time, 3D selection of point clouds is still a
challenging and unsolved problem.

This research is necessary due to three main reasons:
(a) 3D selection is relevant to many scientific and practical use cases.
(b) 3D selection is a complex problem that is still unsolved.
(c) New developments in XR offer promising leads.

Bridging the gap between well-established 2D methods and new XR technologies, this
project aims to create a intuitive, effective, and immersive way to interact with point
clouds in 3D space. This project has the potential to significantly enhance the user
experience and improve the effectiveness of data analysis and exploration.

This project focuses on 3D point cloud selection and addresses these challenges by
developing a GPU-based (Graphical Processing Unit) selection approach using Signed
Distance Fields (SDFs) to approximate selection volumes. This solution has two main
components: First, implementing a GPU-based SDF approach and validating several
selection techniques based on that underlying framework. The SDF approach uses the
computational power of GPUs to efficiently compute and render SDFs, which serve
as selection volumes. These volumes allow users to intuitively select regions of inter-

1

Introduction

est within the 3D data by defining arbitrary spatial boundaries around desired points,
providing high precision, and handling complex shapes and sizes. The GPU is also used
for the selection calculation, leveraging its parallel nature for efficiency.

The second component involves implementing and validating user-friendly selection
techniques. The project aims to enhance the user experience in XR environments by
combining the GPU-based SDF approach with these techniques.

This project builds upon previous work [8], integrating a GPU-based SDF approach and
validating multiple selection techniques. The goal is to develop a system that performs
computationally efficiently and provides an intuitive and effective user experience for
interacting with 3D data in XR environments.

Based upon the aforementioned problem statement and this project’s approach, the
following research questions are addressed and answered in this project:

RQ1 How can points inside an arbitrary selection volume be computationally se-
lected and queried in a fast manner?

RQ2 What are intuitive and effective manual (hand-tracked) selection techniques
for the user?

The main contribution of this thesis lies in developing a comprehensive prototype,
which includes its conceptualization, design, implementation, and testing. This proto-
type, utilizing SDFs in a GPU accelerated selection approach, effectively demonstrates
an efficient and precise method for real-time 3D data selection of point clouds. Fur-
thermore, the thesis extends its contributions by collecting and analyzing user expe-
rience data from a cohort of 28 participants, offering insights into the effectiveness
of various selection techniques. Two of the four developed selection techniques are
novel, and the other two are based on existing research. This synthesis of technical
innovation and empirical data collection enhances the understanding and practice of
3D data interaction. It establishes a foundation for future research and applications in
this rapidly evolving field.

In the following chapter, I will present related work in XR, point cloud rendering,
SDFs, 3D selection techniques and user studies. Then, I will describe the prototype im-
plementation, including the GPU-based SDF approach and the selection techniques. I
will discuss the prototype’s evaluation in detail, focusing on performance and usabil-
ity. Finally, I will conclude with a discussion of the results and outline future work in
this area.

2

Related Work

2 Related Work
2.1 Extended Reality

Extended Reality (XR) is an umbrella term that encompasses Virtual Reality (VR), Aug-
mented Reality (AR), and Mixed Reality (MR). These technologies blend the real and
virtual worlds, offering immersive experiences that can either fully replace the user’s
environment (as in VR) or enhance it with digital elements (as in AR and MR) [9].
The rapid advancement of XR technologies has seen their application across a wide
range of domains [10–13]. XR’s ability to provide interactive and immersive experi-
ences makes it a powerful tool for visualizing complex data and creating engaging user
interfaces [14, 15].

XR headsets are one of the primary hardware through which users experience im-
mersive environments, but smartphones are also common for AR applications. These
headsets come in various forms, including tethered, standalone, and AR glasses, each
with distinct capabilities and use cases.

• Tethered Headsets: Devices like the HTC Vive and Oculus Rift fall into this cate-
gory [16]. They require a connection to a powerful computer to deliver high-quality
graphics and processing power. These headsets typically offer higher-fidelity expe-
riences with more robust tracking capabilities.

• Standalone Headsets: Standalone devices, such as the Pico, Meta Quest, and Apple
Vision Pro series, are self-contained and do not require a connection to a PC. These
headsets balance portability and performance, making them accessible for consumer
and professional use. The integration of inside-out tracking (where cameras on the
headset track the environment and the user’s position) and advanced hand-tracking
features have made standalone headsets increasingly popular in gaming and enter-
prise settings. Most Android-based standalone headsets can also be used in a teth-
ered mode.

• Augmented Reality Glasses & Smartphones: Standalone AR devices, like the
Microsoft HoloLens, Magic Leap, or AR smartphone apps, overlay digital content
onto the real world, allowing users to interact with virtual objects while remaining
aware of their physical surroundings. These headsets are particularly useful in fields
like architecture, where virtual models can be viewed in real-world environments,
or in remote assistance, where experts can guide users through tasks with visual
overlays.

Significant advancements in display technology, sensor integration, and processing
power have marked the evolution of XR headsets. Modern headsets are equipped with

3

Related Work Extended Reality

high-resolution displays, low-latency tracking systems, and increasingly sophisticated
sensors that enhance the immersion and interactivity of XR experiences. For instance,
advancements in foveated rendering (which reduces the rendering workload by focus-
ing high resolution only where the eye is looking) [17, 18] have contributed to more
realistic and performant experiences.

Hand-tracking is a critical component of XR that allows users to interact with virtual
objects using their natural hand movements without needing traditional controllers.
This technology leverages a combination of computer vision and machine learning al-
gorithms to detect and interpret the position, orientation, and movement of the user’s
hands and fingers in real-time.

Early implementations of hand-tracking in XR relied on external hardware, such as
Leap Motion devices, which used infrared sensors to track hand movements. However,
as XR headsets have evolved, so too has the integration of hand-tracking technology.
Modern headsets like the Meta Quest and Microsoft HoloLens incorporate built-in
cameras and sensors, enabling more sophisticated and accurate hand-tracking capa-
bilities without additional peripherals.

The role of hand-tracking in XR is particularly significant in fields that require pre-
cise manipulation of virtual objects, such as medical simulations, where surgeons can
practice procedures using their hands, or in design and engineering, where 3D mod-
els can be manipulated directly. In these contexts, the naturalness of hand-tracking
reduces the learning curve and increases user engagement, making it a critical area of
research and development in XR [19, 20].

XR development is a rapidly evolved landscape, driven by the advancements of hard-
ware and softare. Key players in this field include game engines like Unity [21] and
Unreal Engine [22], which are industry standards for creating XR experiences. Unity
is widely favored and has higher market share in the XR space [23]. Unity excels at
ease of use, flexiblity and robust support of XR platforms. Unreal Engine on the other
hand, is known for its high-fidelity graphics and advanced rendering capabilities.

2.2 Point Cloud Rendering

Efficient data structures are fundamental to managing large point clouds, enabling the
handling of millions or even billions of points with high performance. Structures such
as kd-trees [24], quadtrees [25], Octrees [26–28], Bounding Volume Hierarchies (BVH)
[29], and tools like OpenVDB [30] are commonly used to organize point data spatially,
allowing for rapid search and retrieval operations. These data structures optimize both

4

Related Work Point Cloud Rendering

rendering and selection processes by significantly reducing the complexity of point
queries and enabling efficient data traversal [24–29].

Beyond efficient data storage, rendering techniques play an equally critical role in
achieving high-performance visualization of point clouds. Techniques such as frustum
culling, level-of-detail (LOD) rendering, and point cloud compression [27, 28, 31, 32]
are pivotal in enhancing rendering efficiency and reducing computational overhead.
Frustum culling minimizes the number of points rendered by eliminating those outside
the viewer’s field of view, while LOD rendering dynamically adjusts the detail level
of the point cloud based on the viewer’s distance, balancing performance with visual
quality. Point cloud compression further reduces the data size, making it more feasible
to render large-scale datasets in real-time.

Recent advancements in point cloud rendering have introduced out-of-core[33] tech-
niques combined with LOD rendering, supporting the visualization of massive point
clouds that far exceed the memory capacity of a typical GPU. Out-of-core methods
store the majority of the point cloud data on disk, loading only the necessary sub-
sets into memory as needed, which is crucial for handling large-scale datasets with-
out compromising performance. This approach, often implemented alongside octree-
based data structures, has proven particularly effective in web-based applications [26,
34], where it allows for the visualization of extensive point clouds without requiring
substantial local computational resources. These methods have gained popularity in
various domains, including geospatial mapping, urban planning, and cultural heritage
preservation [26], where they enable the detailed visualization of complex environ-
ments.

Unity-based approaches to point cloud rendering also exist [28, 27], though they are
often not publicly available or fully production-ready. While Unity provides a flexi-
ble environment for developing interactive applications, its out-of-the-box capabilities
for handling large point clouds are limited compared to more specialized engines or
frameworks. Some efforts have been made to integrate efficient point cloud rendering
techniques within Unity, leveraging its robust ecosystem and compatibility with XR
devices, but these solutions typically require significant customization and are not yet
as mature as those found in other platforms. As such, while Unity holds promise for
future developments in point cloud rendering, particularly in XR applications, it re-
mains a developing area of research and development.

5

Related Work Point Cloud Rendering

2.3 Signed Distance Fields

Signed distance fields are essential in computer graphics and computational geometry
for representing shapes and calculating distances. They store, for each texture pixel
(texel), the orthogonal distance to the surface of an object, along with a sign indicat-
ing whether the point is inside or outside the object. By convention, this distance is
positive outside and negative inside. In figure 1, the SDF of a circle is visualized, with
the distance values encoded as colors.

Figure 1: Signed Distance Field of a Circle. Negative values (blue) are inside, positive
values (orange) are outside, and black represents the surface. [35]

The foundational work on Signed Distance Fields (SDFs) can be traced back to the de-
velopment of the Euclidean distance transform for binary images in the 1980s. This
transform was a significant breakthrough, enabling the calculation of the shortest dis-
tance from each pixel to the nearest object boundary in binary images [36]. These early
developments primarily focused on image processing and pattern recognition, laying
the groundwork for later 3D graphics and modeling applications.

The advent of real-time ray marching algorithms further propelled the use of SDFs.
These algorithms, which leverage the parallel processing capabilities of modern GPUs,
allow for the efficient rendering of implicit surfaces. This advancement was crucial for
procedural content generation and real-time graphics applications, enabling the visu-
alization of highly detailed and dynamic scenes [37].

Signed distance fields have played a pivotal role in various areas such as three-dimen-
sional rendering, collision detection [38, 39], shape reconstruction, and mesh genera-
tion [40, 41]. They offer a compact and efficient representation of geometric shapes,
facilitating operations such as anti-aliased rendering and gradient estimation[42]

Researchers have explored the use of signed distance fields in ray tracing, image pro-
cessing, and solid modeling [43–46]. Their ability to represent complex shapes and

6

Related Work Signed Distance Fields

smoothly interpolate between surfaces makes them valuable in computer graphics and
related fields.

Several techniques have been developed to efficiently construct and manipulate signed
distance fields, including distance estimation from triangular meshes and various op-
timization approaches [47–51]. Tools for the Unity game engine are also available [52–
54].

2.4 3D Selection Techniques

Manual techniques for selecting subsets of data within a point cloud are essential for
data exploration, annotation, and analysis tasks. Traditional techniques often involve
selecting points within a 2D projection, which can be limiting and less intuitive [55,
56]. More advanced methods include 3D selection volumes and tools that allow users
to specify regions of interest directly within the volumetric space [57, 58, 28].

Selection techniques in XR environments have evolved to leverage hand-tracking ca-
pabilities and other input modalities. Methods such as ray-casting, where users point
and select objects using a virtual ray emitted from their hands [59], and volume-based
selection [57, 58, 28], where users define a spatial boundary around the desired points,
have become popular. These techniques provide precise and efficient ways to interact
with 3D data, enhancing usability and user satisfaction [60, 19].

Early work in 3D data selection developed a bi-manual point cloud selection tool using
a stereo camera for hand-tracking and a head-mounted display, pioneering cost-effec-
tive VR-based 3D data visualization [61]. This system allowed users to translate, scale,
and rotate point clouds, addressing issues like the “fat finger problem” [62]. Despite
its innovation, it was limited to single-point selection and had minimal user testing.

Later improvements integrated Leap Motion with a Unity application for 3D input
while users viewed data on a 2D screen [56]. This system included modes for trans-
formations and selections controlled via hand gestures. However, the Leap Motion’s
tracking limitations and the lack of depth perception on a 2D screen posed challenges.

Another technique, Slice-n-Swipe, used a “chef’s knife” metaphor with Leap Motion,
allowing users to cut and select subsets of point clouds [63]. Though innovative, it re-
quired a 3D mouse for spatial movement, highlighting the limitations of hand-tracking
technology at the time.

The Tangible Brush combined 2D touch input with 6 degrees of freedom (DOF) 3D
tangible input, using a spatially aware tablet to perform 3D selections [64–66]. While

7

Related Work 3D Selection Techniques

more accurate than existing methods, it was limited by 2D output and lacked the ad-
vantages of viewing 3D data in a 3D space. This technique suggested further research
integrating modern XR technology.

Recent volumetric selection techniques are based upon simple geometric shapes like
spheres, cuboids, or cylinders [57, 58, 28]. Various use cases have validated these tech-
niques, from trajectory selection[57] to point-cloud brushing with spherical volumes
[58, 28]. Built with Unity, these techniques have limited evaluation with more exten-
sive and denser point clouds and have been evaluated with trajectory data sets[57]
or with a discrete low number of game objects to approximate points in Unity [58].
However, significant work has been done to extend the capabilities of Unity in point
cloud rendering [28], which has also allowed for spherical collision-based selection
with Unity’s engine physics with a massive number of points. This collision approach
relied on the query possibilities of the underlying data structure and only allowed for
spherical selection volumes.

Automatic techniques are an efficient alternative to manual selection methods, par-
ticularly when dealing with massive data sets and point clouds [67]. The techniques
leverage machine learning and advanced segmentation methods to automate the se-
lection of relevant points, reducing time and effort from users [67–70].

One major issue for machine learning approaches is their inherent dependency on
large, high-quality datasets [71, 67]. The final selection accuracy is heavily influenced
by the diversity and representativeness of training data, potentially degrading selec-
tion results. Another challenge is the computational complexity of algorithmic tech-
niques [68, 69], potentially requiring extensive pre-calculation and data preparation.

To summarize, combining point cloud rendering, efficient data structures, and ad-
vanced selection techniques with XR and hand-tracking technologies shows promise
for enhancing 3D data interaction. While automatic approaches do exist, they are not
ready for real-time XR use, and there is still a significant need for accurate and flexible
manual approaches. This project aims to improve the performance and usability of 3D
data selection in XR environments by integrating GPU-based SDFs for selection vol-
umes and validating user-friendly manual selection techniques.

2.5 User Studies

User studies are crucial in understanding how individuals interact with Extended Re-
ality (XR) technologies. These studies contribute to designing and developing user-
centered XR systems by measuring usability, presence, and task performance. They

8

Related Work User Studies

typically employ qualitative and quantitative methods, adapted from traditional Hu-
man-Computer Interaction (HCI) research but tailored to the requirements of immer-
sive environments [72, 73].

A common approach in XR user studies is an experimental design, where researchers
systematically vary elements of the XR system—such as interaction techniques or lev-
els of immersion, to observe their effects on user experience. These experiments often
utilize within-subjects designs to minimize variability and isolate the impact of the
tested variables [74]. To complement this, surveys and questionnaires, like the Pres-
ence Questionnaire (PQ), Immersive Tendencies Questionnaire (ITQ), or the System
Usability Scale (SUS), are widely used to capture subjective user feedback, providing
insights into users subjective experience [75].

Task performance metrics, such as accuracy, completion time, and error rates, are crit-
ical in XR studies focused on professional applications or training scenarios. These
metrics help evaluate how effectively users can perform tasks in an XR environment,
essential for validating the system’s utility in real-world contexts.

Qualitative methods, including interviews and focus groups, are also integral to XR
user studies. These methods allow researchers to delve deeper into users’ thoughts and
feelings, uncovering insights that might not emerge through quantitative measures
alone. For example, interviews conducted before and after XR experiences can reveal
changes in user perceptions and attitudes, offering valuable information for refining
system design.

However, conducting user studies in XR presents several challenges. Motion sickness,
a common issue in immersive environments, can affect the validity of the results and
needs to be carefully managed [76]. The complex datasets generated by XR studies,
mainly from behavioral and physiological measures, require sophisticated analysis
techniques to derive meaningful insights [77].

Finally, the insights gained from XR user studies are invaluable. They not only guide
the development of more intuitive and accessible XR systems but also contribute to a
deeper understanding of how these technologies impact users. The findings from XR
user studies are essential for ensuring that these immersive technologies fulfill their
potential to enhance user experiences and achieve their intended outcomes [78].

9

Prototype

3 Prototype

This chapter first provides an overview of the development methods and technological
concept and then details the Unity implementation with all its related components.

3.1 Methods and Concept

Development was based on iterative user feedback in a qualitative manner and an ag-
ile software development process. Based upon an initial research phase, the prototype
was conceptualized and developed. The prototype’s computational performance was
tested locally, and the results are presented in chapter 5. The prototype was tested with
a cohort of 28 participants in a user experiment to gather qualitative and quantitative
feedback on the effectiveness and usability of the developed selection techniques. The
results of this study are presented in chapter 5.

The state-of-the-art of point cloud selection has the following challenges (see related
work in chapter 2):

(a) Traditionally, 2D software tools have no stereo 3D viewer and little to no recent
adoption of XR technology.

(b) Automatic selection approaches do exist (often based on segmentation models)
but are inherently data-dependent and do not always work perfectly, necessi-
tating manual selection.

(c) Manual selection approaches often rely on simple, less precise, and adaptable
techniques like bounding boxes or ray-casting, limiting possible selection vol-
umes and requiring extensive optimization for semi-large point clouds.

(d) Selection in large point clouds is traditionally computationally intensive and not
optimized for real-time application, let alone frame-by-frame calculation.

Regarding (a) and (b), a Unity-based XR application that leverages the advantages of
viewing 3D data in 3D and enables natural, manual interaction through hand-tracking
seems more appropriate. Addressing (c) and (d), a SDF-based selection algorithm that
fully utilizes the GPU’s parallelization power and enables near-arbitrary selection vol-
umes is proposed. The concept above, combined with a fast and efficient point cloud
render approach and several volumetric selection techniques, enables accurate real-
time selection and querying of points inside near-arbitrary volumes.

Unity provides a robust framework for developing XR applications as the underlying
game engine and is next to the Unreal Engine [22] and Godot [79], the industry stan-
dard for XR development. Using Unity’s XR Interaction Toolkit (XRI) and OpenXR as

10

Prototype Methods and Concept

the XR plugin provider, it is possible to create a platform-independent XR application
that can run on various devices. Although the prototype was developed and tested on
a Meta Quest Pro and Quest 3 headset in practice, the use of OpenXR ensures compat-
ibility with other hand-tracking-enabled devices. While this work is not Unity-specific
and could be implemented in other engines, Unity also provides a robust ecosystem
and little friction to get started with XR development.

SDFs can represent an approximation of any 3D mesh in a compact numerical format
with less memory than a complex polygonal mesh. Besides memory advantages, SDFs
can be stored as 3D textures and are natively supported on the GPU, making SDFs an
excellent choice for a volumetric selection. State-of-the-art approaches to point cloud
selection rely on complex data-structures and simple selection shapes like spheres or
boxes that facilitate fast data traversal. With this SDF based approach on the other
hand, arbitrary selection volumes are possible.

This proposed selection concept makes full use of GPU-based compute shaders. Using
only a compute shader that runs over all points of the point cloud, checking whether
this point is inside or outside a given SDF texture, and repeating that per selection
volume, it is possible to fully parallelize and drastically simplify this simple selection
task by combining it with the render pipeline with little additional cost. The result of
each step of the selection compute shader is then saved into a compute buffer, which
allows access outside the GPU. Limiting the data transfer between CPU and GPU is
paramount to avoid bottlenecking the calculations with data transfers.

Visualizing large point clouds is a computational challenge on its own. While state-of-
the-art approaches and optimizations do already exist [26–28], during experimentation
and pilot tests, it was found that using an indirect and instanced rendering approach
in Unity, using direct GPU draw calls [27], it is possible to draw millions of points and
display them on an XR headset using multi-pass rendering, which still effectively cuts
the frame rate in half. This is fast enough to evaluate the SDF-based selection approach
and build an efficient prototype. Recent state-of-the-art approaches have been consid-
ered but deemed unnecessary due to their complexity and stability in Unity adaptap-
tions. This project’s focus is foremost selection, therefore implementing a performant
massive point cloud renderer in Unity was out-of-scope, but is essential future work.

Hand-tracking was chosen as the sole input modality for this research due to its po-
tential to offer a more natural and intuitive interaction experience in XR environments.
Unlike traditional controllers, hand-tracking allows users to interact with virtual ob-
jects directly with their hands, mimicking real-world gestures and actions, which can
significantly reduce the learning curve and increase user engagement. Research has

11

Prototype Methods and Concept

shown that hand-tracking can enhance spatial awareness and immersion, making it
a powerful tool for tasks that involve complex spatial manipulations, such as 3D data
selection [19, 80, 81, 60]. Additionally, recent advancements in hand-tracking technol-
ogy, such as those by Ultraleap, have improved the accuracy and responsiveness of
these systems, addressing previous limitations related to tracking fidelity and occlu-
sion [82].

In order to validate and test the SDF-based approach, several volumetric selection tech-
niques have been developed and integrated into the prototype. In the first (Shapes),
users can spawn several shapes, change their dimensions, and place them inside the
point cloud as selectors (based upon previous and related work [83, 84, 56, 57, 85]).
In the second (Convex Hull), a convex hull can be drawn while pinching and drawing
in the air (a novel technique). The third and fourth modes are brush modes, whereas,
in the third (Brush Sphere), users can brush/draw with a sphere (based upon related
work [58, 86, 28]). Furthermore, in the fourth (Brush Hands), it is possible to directly
use the visualized hand mesh as a selection shape (a novel technique). In addition to
the selection modes, a hand-attached UI is available to the user to change point size,
change selection modes, and reset or accept the current selection. Finally, users can
transform the point cloud and all active selection shapes using a two-handed fist ges-
ture. This allows for intuitive and natural interaction with the point cloud and the
selection shapes.

3.2 Implementation

Figure 2: System Architecture of the Prototype

The application is built with Unity using OpenXR and Unity’s XR Interaction Toolkit.
A central controller script in the scene handles everything from point cloud and se-
lector mesh handling to selection compute shader dispatch and GPU draw calls. On
top of that, several empty game objects represent each selection technique/mode. Each
selection mode has all its necessary interaction scripts attached to it. A selection state
controller controls all four of these selection mode controllers. This state controller

12

Prototype Implementation

effectively controls the active state of each mode controller. This is possible as scripts
are only activated if their parent game object is active.

In the scene, only selector shapes and the point cloud are visible, apart from the tracked
hand models and the hand UI. Regarding the hand-tracking, there is a seperate “Hand
Watcher” script that keeps track of position and gesture state for both hands and rel-
evant finger joints based upon XR Interaction Toolkit’s gesture detection and hand
data. All selection techniques access and reference this script when checking for the
state of hands and gestures.

The application consists of three main components:
• Selection Handling
• Point Cloud Rendering
• Hand-tracking-based user interaction

The following sections will explain each of these components and all other relevant
scripts and procedures in detail.

3.2.1 Selection Handling

Figure 3: Overview of the selection handling. Yellow is data, red are shaders and green
are data buffers

In this concept, selections are volumetrically defined as meshes for the user. Using
these selection meshes, an SDF texture is calculated for each selector (covered more in

13

Prototype Selection Handling

detail in section 3.2.1.1). Assuming an SDF is given for an arbitrary mesh selector, it is
trivial to check whether a point is inside or outside that SDF by simply sampling the
SDF texture at the correct position.

To achieve this, all local vertex positions and colors of the point cloud are stored in
separate buffers on the GPU (Shown in green in figure 3). The selection handling hap-
pens in a compute shader call for every selector and every time a selector changes.
In this compute shader (Selection shader in red in figure 3), the local point from the
vertex buffer is first transformed to Unity’s scene world space and then transformed
into local SDF space of the selector using both transform matrices as shown in figure
3 in yellow. Then, the SDF texture of the current selector is sampled, and the result is
saved in a new results buffer solely responsible for keeping track of the inside/outside
state for each point of the point cloud. Given that the result buffer stays in GPU mem-
ory, the same buffer is used to color the point cloud accordingly in the render stage
using a custom shader (more on that in section 3.2.2), which eliminates unnecessary
data transfer. Data from the result buffer is available to transfer out of the GPU mem-
ory therefore allowing the application to know exactly which points are selection and
which are not.

3.2.1.1 SDF Generation

Signed Distance Fields (SDFs) are powerful tools for defining volumetric regions
within 3D spaces. SDFs represent the distance of any point in space to the nearest sur-
face, with the sign indicating whether the point is inside or outside the surface. SDFs
are an analytical approximation of the surface, and it is therefore paramount for the
SDF to be as accurate as possible in order to be used for selection purposes.

While generating an SDF per se is not difficult, generating an SDF from an arbitrary
mesh that is accurate and fast enough for real-time applications is far more challeng-
ing. In early development, it was found that meshes with sharp corners tend to have
difficulties being generated. Also, in some cases, a sign could flip during calculation,
propagating through the texture and rendering the texture practically useless for se-
lection purposes. Each selector volume in the prototype has a component script that
is solely responsible for serving an SDF from its local mesh. This way, the source of
the final SDF texture is abstracted enough so that different SDF providers could theo-
retically be used. In practice, though, only the SDF Baker from Unity’s VFX Graph is
used due to its performance and accuracy compared to multiple other solutions tested
[52, 53].

14

Prototype SDF Generation

The SDF Baker from Unity’s VFX Graph [54] is developed for real-time visual effects
(VFX) applications and is, therefore, highly optimized. It takes advantage of compute
shaders to calculate the texture, making it an excellent choice for this project. It aligns
with the technological concept and allows for real-time SDF generation of arbitrary
meshes.

a) b) c)
Figure 4: The Stanford bunny represented as mesh in a). A 3D visualization of the gen-

erated SDF in b) and a 2D slice of the same SDF in sub figure c)

Each selector has a component solely responsible for serving an up-to-date SDF of its
mesh. Figure 4 shows an example mesh with two visualizations for its SDF generated
by the SDF Baker of the VFX Graph.

3.2.2 Point Cloud Rendering

Point clouds can easily range between a few thousand and hundreds of millions of
points. While rendering a few thousand points is trivial, rendering millions of points
in real-time is challenging.

Traditionally, data structures like Octrees and Level of Detail (LOD) optimize the ren-
dering process and render only the points that can be viewed with the appropriate
quality. Potree [26] is a popular open-source solution that combines Octrees and LOD
to render massive point clouds in the browser. While Potree is an excellent and widely
used solution in the remote sensing community, it is unsuitable for real-time applica-
tions due to its complexity and rigidity, as it requires point clouds to be converted into
a custom format first. There is an attempt at porting a similar approach to Unity [27,
28], but this solution still needs to be production-ready and suffers from many bugs.

Point clouds are loaded into the application using either a mesh based approach where
PLY files [87] are converted into a mesh object using a PLY importer[88] or via a
CSV[89] approach where the point cloud is read directly from file. In both supported
cases a “Point Data Handler” script is used that serves a list of vertices positions and

15

Prototype Point Cloud Rendering

colors. The PLY approach uses a modified PLY importer to allow for readable mesh data
[88] and the CSV approach uses a self-built CSV parser for position and color values.

This prototype renders each point as an instanced and rotated quad. This simple and
efficient approach allows millions of points to be rendered in real-time. The indirect
rendering further optimizes the process by reducing the number of draw calls and al-
lowing the GPU to handle the rendering process more efficiently [27]. The result is a
visually appealing representation of the point cloud data that maintains high perfor-
mance and interactivity.

To fully leverage the power of the GPU, it is paramount to refrain from transferring
data between CPU and GPU as much as possible since this data transfer is very slow.
To avoid this, all data is stored in the GPU in buffers, and all calculations are done on
the GPU using compute shaders (Section 3.2.1).

Figure 5: Diagram showing how the point cloud data gets split into three seperate com-
pute buffers on the GPU. The instanced rendering shader then accesses these buffers.

Instead, all points and their respective colors are stored and kept in buffers on the GPU
(Figure 5). This allows for minimal data transfer between CPU and GPU after initial-
ization. Points are rendered via direct GPU draw calls using Unity’s Graphics API with
G r a p h i c s . R e n d e r M e s h I n d i r e c t (Instanced Shader in figure 5). This draw call uses a
vertex position buffer, color buffer, and result buffer on the GPU, allowing for the ren-
dering of millions of points as quads without any further optimizations.

16

Prototype Point Cloud Rendering

3.2.3 User Interaction

Given the rise and improvement of hand-tracking technology in recent years, this
work leverages hand-tracking as the only input method for the user. OpenXR is the
underlying XR framework and enables several different hand-tracking headsets to be
used as input.

User interactions in this concept can then be divided into three categories:
• Hand Menu (UI)
• Point Cloud Transformations
• Selection Techniques

3.2.3.1 Hand Menu

In this prototype, a user can open a hand menu by looking at their left hand, and it
can then be navigated using a direct poking gesture with the right hand, allowing for
a similar “touch” interaction as with traditional touchscreens. Users can change the
displayed point size in the menu, reset or accept the current solution, and switch be-
tween several selection modes (Fig. 6).

Figure 6: Hand menu of the prototype, activated by looking at open palm.

The XR Interaction Toolkit by Unity, which ties in directly with the OpenXR Runtime,
is used as the UI and interaction provider, which greatly simplifies development and
future UI extensions.

17

Prototype Hand Menu

3.2.3.2 Point Cloud Transformations

It is paramount to allow users to rotate, scale, and translate the point cloud to their
liking. This is important for exploratory analysis and the accurate selection of subsets
as the required and intended region of interest is not always visible.

Figure 7: Transforming (translate, scale and rotate) the point cloud using a two-handed
fist gesture.

To facilitate this interaction, users can always use a two-handed fist gesture. This then
maps the distance between the hands to the scale of the point cloud. For translation,
the center point between both hands is mapped to the location, and for rotation, the
angle between the hands is mapped to the local rotation of the point cloud. This allows
a very intuitive and natural way to manipulate the point cloud in 3D space. A two-
handed fist gesture was used, as this is very natural and distinct from pinch gestures
used in all other selection techniques, reducing the possibility of false positives.

18

Prototype Point Cloud Transformations

3.2.3.3 Selection Techniques

Four different selection techniques have been implemented in this prototype to test the
feasibility of different selection techniques and the SDF selection itself and to provide
the user with a variety of options. The first two techniques are strictly direct, and the
last two are continuous brushing techniques.

Figure 8: The “pinch and drag apart” gesture used to spawn shapes.

For the first selection technique (Shapes), simple shapes can be spawned by pinching
closely together and dragging the hands apart (Fig. 8). This shape based approach is
inspired by related work [83, 84, 56, 57, 85]. This gesture spawns a preselected shape
(sphere, box, or cylinder) between the hands and directly locks the distance between
the hands to the object’s scale. Boxes and cylinders are scaled per axis, while the sphere
is scaled uniformly. This allows the users to scale the object and change its initial di-
mensions as long as both hands are pinching. As soon as the pinch gesture ends, di-
mensions are locked, and the object can only moved, rotated, and uniformly scaled by
naturally grabbing it with either one or two hands.

Figure 9: The drawing of convex hulls in action using the pinch gesture.

19

Prototype Selection Techniques

The second mode (Convex Hull), a novel technique, allows users to draw convex shapes
directly into thin air by drawing while pinching with one hand (Fig. 9). Technologi-
cally, this is achieved by keeping track of all pinch positions and creating a convex
hull mesh. As this approach can lead to very sharp corners, which are detrimental to
SDF generation, points are smoothed first using a Laplacian filter before being fed into
a convex hull generator. This mode works similarly to a lasso metaphor in traditional
2D applications but is limited to convex volumes.

Figure 10: Brushing using a sphere as a selector/brush.

The last two modes allow brushing, which is a continuous selection. In the third mode
(Brush Sphere), users spawn a sphere the same way as in the first mode and use it
directly as a brush (Fig. 10). The sphere can be grabbed to be scaled and translated
freely to draw over the point cloud. This mode is also inspired by related work [58,
86, 28]. Technically any volume could be used as a brushing selection volume but for
simplification and utility reasons only a sphere was chosen to be used in this mode.

20

Prototype Selection Techniques

Figure 11: Brushing using the hand itself. Activated by pinching with the other hand.

The fourth mode (Brush Hands), a novel approach, allows users to use their hands as a
brush directly (Fig. 11). Thanks to the efficient GPU-based SDF calculation, it is possi-
ble to recalculate the SDF from the hand mesh in real-time. To avoid the Midas touch
problem [90], it is necessary to activate one hand by pinching with the other. This
allows for controlled activation of the hand as a selector mesh.

21

Evaluation Methods

4 Evaluation Methods

This work is evaluated in two ways: with computational performance metrics of the
rendering and selection capabilities and a usability study focusing on the usability,
accuracy, and effectiveness of the implemented selection techniques.

4.1 Computational Performance

All performance tests were performed on a machine with an Intel Core i9-10900KF
CPU and an NVIDIA GeForce RTX 3070 GPU. Unity Version 2022.3.16f1 with DX11
was used, and the prototype application was streamed via Unity’s play mode to a Meta
Quest Pro with firmware version 67 through Meta Quest Link via Cable.

Execution times of the direct GPU draw call, G r a p h i c s . R e n d e r M e s h I n d i r e c t () , are
measured on different-sized point clouds ranging from 150′000 to 24 million points.
Compute shader execution and render times have been measured using Unity’s GPU
profiler.

4.2 User Experiment

In order to test the usability of each selection technique against a variety of tasks,
as well as to gather overall quantitative and qualitative feedback on the selection ap-
proach and answer the following hypothesis, a user experiment was carried out:

H1 The use of different selection techniques will significantly affect both the time
taken to complete the selection task and the accuracy of the selections.

H2 Higher scores on the Mental Rotation Test (MRT) will correlate with faster
completion times and greater accuracy in 3D selection tasks.

H3 Increased task difficulty will lead to longer completion times and a higher rate
of selection errors.

H4 Different point clouds have little to no effect on the selection speed and accu-
racy.

A repeated-measure design with within-subject independent variables, selection tech-
nique, task, and point cloud was chosen for the user experiment, where each partici-
pant tested all selection techniques on both point clouds and all tasks. This design was
chosen to reduce the number of participants needed and increase the study’s statistical
power. The order of the selection techniques, tasks, task complexity, and point clouds
were randomized to mitigate order effects. This resulted in 28 participants x 4 selection
techniques x 2 tasks (2 per technique) x 2 point clouds = 448 interactions.

22

Evaluation Methods User Experiment

4.2.1 Participants

When comparing the difference between two dependent means (using G*Power [91]),
a sample size of 27 participants is required for the user experiment to have 80% power
to detect a medium effect size of 0.5 with a significance level of 0.05. Participants were
recruited from the computer science institutes at the FHNW, friends, and family. In
total, 28 people participated (16 male and 12 female) with an average age of 33 (Mdn =
31, SD = 10). Seventeen pursued higher education levels (9 bachelor’s, three master’s,
and five doctorate degrees), seven people noted high school as their highest finished
education level, two people college, and two people a Swiss Certificate of Competence.

In total, 24 people (85.7%) have used VR before, but most (17 people, 60.71%) reported
rare to occasional use. Seven of these 24 people use or work with VR monthly to
weekly (25%). 18 people (64.3%) reported previous use of hand-tracking technology, 15
of which were rarely to occasional (53.6%) and only three on a monthly to weekly basis
(10.7%). 19 out of 24 reported previous interaction with 3D data (e.g., point clouds or
3D models, 67.9%), with 17 reporting academic or professional use (60.71%).

Half of the participants rated their AR/VR/XR experience as basic, while seven rated
themselves at intermediate (25%), three participants advanced (10.7%), and four (14.3%)
identifying as expert users. In contrast, general computer usage saw higher exper-
tise, with 15 (53.6%) reporting advanced experience and 10 (35.7%) identifying as ex-
perts or native users. Only two participants rated themselves at an intermediate level
(7.1%) and one at basic level (3.6%). For computer gaming, the participants were more
evenly distributed, with ten (35.7%) having advanced experience, nine (32.1%) basic,
and five (17.9%) intermediate, while four (14.3%) were experts. This diverse range of
expertise among participants provided a solid foundation for evaluating the selection
techniques, ensuring that the study’s findings are applicable across different levels of
user experience.

Two participants reported slightly imperfect color vision, and four mentioned possible
motion sickness in VR. However, none of the participants reported any issues regard-
ing color vision during the user test. However, the user test was paused once for a
short break for two out of the four participants with possible motion sickness. All par-
ticipants were able to complete the user test without any further issues.

4.2.2 Materials

The pre-questionnaire collected consent, age, gender, education level, and VR, hand-
tracking, and 3D data experience. VR and hand-tracking experience were rated on a
5-point Likert scale from ‘rare’ to ‘daily’. Participants were asked whether they had

23

Evaluation Methods Materials

interacted with 3D data before and, if so, in what context and with what tools. Their
proficiency with these tools was rated on a 4-point scale from ‘beginner’ to ‘expert’.
A 4-point scale has been chosen over a 5-point scale to avoid a neutral option and get
more specific information.

The Mental Rotation Test (MRT) [92] was used to test the participant’s spatial abilities.
The MRT tests spatial visualization ability and requires participants to rotate objects
to match a target object mentally. The test consists of 20 items, and the score is the
number of correct answers. The MRT was used to test if there is a correlation between
spatial abilities and selection speed, as there has been previous research [93] hinting
at a possible correlation. The MRT was conducted before the user test and right after
the pre-questionnaire.

Unity Version 2022.3.16f1 with DX11 was used for the user experiment, and the pro-
totype application was streamed via Unity’s play mode to a Meta Quest Pro with
firmware version 67 through Meta Quest Link via Cable. A Windows laptop with an
Intel Core i9-13900H CPU and an NVIDIA GeForce RTX 4070 GPU with 8GB GDDR6
Memory was used to run the Unity application. The use test was conducted in a quiet
room with the participant standing in a play area of at least 3x3 meters. The researcher
was present during the user test to answer questions and record the results.

For each task and every user, task completion time and selection accuracy were
recorded as the primary outcome measures. For this, the Unity application was
extended with a U s e r T e s t C o n t r o l l e r script that essentially wrapped the main
C o n t r o l l e r and performed time and accuracy measurements, handled point cloud
switches and displayed and evaluated the current selection task. Additionally, the
script exported all user test results as a CSV file for later analysis.

The researcher started time measurement manually when the user was ready to start
the task and stopped when the user verbally confirmed that the task was completed or
the two-minute time limit was reached. Accuracy was measured by keeping track of
how many points of the highlighted region were missing and how many excess points
were selected. Compared with the number of points in the highlight and the complete
point cloud, a percentage score is calculated by weighting both the highlight accuracy
and overall accuracy each at 50%:

𝑆 = (𝐸𝐻𝑇𝐻)+(
𝐸
𝑇)

2

Where 𝐸𝐻 is the number of missing points in the task highlight, 𝑇𝐻 is the total num-
ber of points in the highlight, 𝐸 is the number of points equal overall, and 𝑇 is the

24

Evaluation Methods Materials

total number of points in the cloud. 𝑆 is the final percentage score. The total number
of wrongly selected points is also recorded separately by summing up the excess and
missing points compared to the required points per task.

Additionally, the number of restarts and selection volumes have been recorded. The
number of restarts is used to measure task difficulty, and the number of selection vol-
umes to measure selection technique efficiency. The number of selection volumes is
only applicable for the Shapes and Convex Hull selection modes, as with the brush
modes, the number of selectors is always the same. The researcher recorded both val-
ues manually during the user test. After each task, participants were asked to rate their
confidence in the selection on a 5-point Likert scale.

After the main testing session, participants were asked to complete a post-question-
naire form. This form consisted of the System Usability Scale (SUS) for each selection
technique, ratings on the overall experience, hand-tracking, and gestures, all on a 5-
point Likert scale. Additionally, qualitative open-text feedback was gathered on what
they most liked, found the most challenging, and suggested improvements.

4.2.2.1 Tasks

A 3D scan of a skeleton [94] with 1.4 million points, and a point cloud of the local
bubble [95, 96] with 786′000 thousand points were chosen as point clouds for the user
tests. Both represent data from different fields, biology and astronomy, with different
scales and dimensions (Fig. 12).

a) Skeleton b) Local Bubble
Figure 12: Both point clouds are used in the user tests. The skeleton [94] and the local

bubble colored by distance [96]

25

Evaluation Methods Tasks

For each point cloud, eight subsets of points have been pre-defined in advance and
used as tasks during the user test. The eight tasks are grouped into two equally sized
groups based on subjective complexity. Low-complexity tasks are usually task regions
where it is straightforward to select the highlight accurately and where other points
do not occlude the highlighted volume. High-complexity tasks are split into several
smaller highlight groups, are occluded, or their shape requires special care while se-
lecting. These tasks/subsets were manually selected in advance using the prototype of
the 3D selection approach, which was based on qualitative judgment and early pilot
testing.

a) Low Complexity Task b) High Complexity Task

c) Low Complexity Task d) High Complexity Task
Figure 13: A selection of tasks used in the user study. a) and b) show each a low and
high complexity task on the skeleton point scan. c) and d) show both task types on the

local bubble point cloud.

During the testing, these tasks were shown to the user as red highlights, i.e., all points
inside the task subset were bright red, and all other points were colored in their origi-
nal point color. In figure 13, examples of tasks for each point cloud and each complexity
group are shown.

26

Evaluation Methods Tasks

4.2.3 Procedure

4.2.3.1 Data Collection and Resesarch Design

Participants were sent the pre-questionnaire and the MRT test in advance, and they
were informed about the user experiment. They gave their consent to participate in
the user test and were informed about the data collection and handling.

Users were briefed on the topic and the goal of the user test. They were then given
a tutorial session where they were shown how to use the prototype, what gestures
were required, and how the different selection techniques worked. After the tutorial,
they were given a training session where they could try out the different selection
techniques on a training point cloud for 10 minutes or until they felt confident in us-
ing them.

Each selection technique is tested in a randomized trial on two tasks for the main user
study. Each task asks the user to select a highlighted number of points as closely as
possible. For each point cloud, users iterated through all selection techniques in a ran-
dom order, and for each selection technique, they performed one task in random order
of both the low and high difficulty group. Users were told which selection technique
to use and then had to complete two tasks only with that technique. Order effects
were mitigated by randomly arranging the order of the selection techniques, tasks,
task complexity, and point clouds.

Every task had a two-minute time limit, and users were told regularly how much time
they had left. The two-minute time limit was determined based on pilot testing and
the assumption that the tasks should be solvable in a reasonable amount of time. If a
participant finished the task earlier, they could stop the task via verbal confirmation.
After each task, participants were questioned on their confidence level on a 5-point
scale. This was repeated for all four selection techniques and eight tasks and then re-
peated overall for the second point cloud.

Right after the main testing session, participants were asked to complete the post-
questionnaire form, which consisted of the System Usability Scale (SUS) for each se-
lection technique, ratings on the overall experience, hand-tracking, and gestures, and
qualitative open-text feedback on what they most liked, found the most challenging,
and suggestions for improvement.

27

Evaluation Methods Data Collection and Resesarch Design

The overall structure of the user experiment was as follows:
0. (Pre-Questionnaire + MRT)
1. Introduction (5min)
2. Tutorial Session (5min)
3. Training Session (max. 10min)
4. Main Test Sessions (2x 15min)
5. Post-Questionnaire (5min)

Since tasks were time-limited to two minutes, the main testing session could take up to
36 minutes but was completed faster on average. The entire user test took a maximum
of 60 minutes per participant.

4.2.3.2 Data Diagnostics and Analysis

Data was first explored and analyzed visually using Tableau [5] and RStudio [97]. Out-
liers were detected and removed using the IQR (Inter-quartile Range) method, with a
scale of 1.5 for outlier detection. Afterwards, the normality assumption was checked
using the Shapiro-Wilk test. If the data was not normally distributed, non-parametric
tests were chosen in later stages of data analysis.

One-way ANOVA (Analysis of Variance) was used to compare the means across multi-
ple groups and determine whether there were significant effects between the variables.
Depending on the ANOVA result, further posthoc tests were carried out—T-tests for
normally distributed data and Wilcoxon tests for non-normally distributed data. Effect
sizes were calculated using Cohen’s d.

28

Results

5 Results
5.1 Computational Performance

Figure 14: Render call times in ms per point cloud size

The render calls for all points of the point cloud scale perfectly linear (Fig. 14), with
all tested point clouds up to 5 million points rendered in under 3.6 ms every frame.
The largest point cloud, with 24.1 million points, took, on average, 17.19 ms to render.
Points were rendered indirectly and instanced with a direct GPU draw call and mea-
sured in Unity’s play mode with Unity’s GPU profiler.

Figure 15: Selection compute shader run times with a varying number of selector
shapes in the scene.

The second shader used in the project, the actual selection compute shader, is also
measured against the same different-sized point clouds (Fig. 15). This compute shader

29

Results Computational Performance

is dispatched for every selector volume in the scene and effectively compares all points
of the point cloud against the SDF texture, storing results in the result compute buffer
on the GPU. In figure 15, the linear growth and execution time of the selection com-
pute shader is shown for one, five, and ten selectors, showing perfect 𝑂(𝑛) growth
with the number of points and 𝑂(𝑛) growth with the number of selectors.

Figure 16: Stacked render times for the indirect instanced GPU draw calls and execu-
tion times of the selection compute shader for five selectors.

Figure 16 shows both the render time and compute shader execution time for five
selector shapes. The large difference in the time it takes for each shader to run is no-
table, with the rendering shader taking significantly longer than the selection compute
shader alone.

Figure 17: Frame rate on a Meta Quest Pro while selection compute shader is running.

30

Results Computational Performance

When using an XR headset to display the data in 3D, multi-pass rendering is used,
cutting the frame rate in half as one rendering pass is used per eye. The render times
in figure 17 are measured while using the application on the headset and while the se-
lection compute shader is running (with five selectors in the scene). These framerates
therefore represent the minimum average and are higher when a selector is not moved
and triggers a execution of the selection shader. On average this difference was 15-20
frames. As seen in figure 16, the majority of the application’s execution time comes
from the rendering itself.

Regarding the performance of the SDF baking it was found that this usually took be-
tween 1ms to 1.25ms per selector. For most selection techniques an SDF would be
baked for the selection volume once at the beginning after dimensions were fix. Even
when users transformed the selector afterwards it did not need recalculation of the SDF
because the selection shader could calculate the correct position, scale and rotation
using the world-to-local matrix of the selector. For the Brush Hands mode however,
continous recalculation is needed, which added roughly 2ms-2.5ms per frame.

5.2 User Experiment

Figure 18: Mean task completion time per selection technique
n=28, total interactions=448 — *** p < .001, ** p < .01, * p < .05, error bars: SEM

Figure 18 shows the average time users completed a task grouped by selection tech-
nique. Results suggest that Brush Sphere and Brush Hands were the fastest techniques

31

Results User Experiment

and Shapes was the slowest. A one-way ANOVA revealed a slightly significant main
effect (F(3,444) = 2.88, p = 0.035, 𝜂2𝑔 = 0.02). A further Wilcoxon test revealed that this
effect mainly stems from a significant difference in task completion time between the
Shapes selection mode and both brushing modes. For all selection techniques, the av-
erage selection time lies between 72.8 and 85.9 seconds, with a total average of 78.26
seconds. The third mode, Brush Sphere, is the fastest on average, closely followed by
the fourth mode, Brush Hands, which takes 75.614 seconds. Additionally, it is to be
noted that both brushing modes were faster than the other two. Statistically there’s
only a significant difference between Shapes and Brush Sphere (p<.05, d=0.2684) and
Shapes and Brush Hands (p<.01, d=0.259). Convex Hull had the highest standard devia-
tion compared to all other techniques, and Brush Hands had the smallest.

Figure 19: Mean weighted scores grouped by selection technique. Weighted score is
a number between 0 and 1 representing percentage of correctly selected points. It is
weighted 50/50 between highlight accuracy and total point cloud accuracy (section

4.2.2).
n=28, total interactions=448 — *** p < .001, ** p < .01, * p < .05, error bars: SEM

In figure 19, the average weighted scores per selection mode are shown. Descrip-
tive statistics confirm brushing modes’ performance advantage, as seen in Fig. 18.
But, in contrast, to mean completion time, Convex Hull performed the worst. One-
way ANOVA revealed a significant main effect between weighted scores and selec-
tion techniques (F(3,444) = 8.15, p = <0.0001, 𝜂2𝑔 = 0.05). The Shapes technique has an
average weighted score of 98.242%. This score is relatively high but lower than the

32

Results User Experiment

scores for Brush Sphere and Brush Hands but only significantly lower than Brush Sphere
(p=0.0027, d=0.337). The Convex Hull technique has the lowest average weighted score
of 97.77% among the four techniques. The Brush Sphere technique has the highest av-
erage weighted score of 99.370%, next to Shapes and significantly higher than Convex
Hull (p=0.00015, d=0.407). There is no statistical significance between both brushing
modes and between both direct selection methods. Overall accuracy scores are very
high for each selection technique with a total average 98.64% (weighted score as ex-
plained in section 4.2.2).

Figure 20: Median wrong points (missing + too much) grouped by selection technique
n=28, total interactions=448 — error bars: SEM

Figure 20 shows the average errors per technique. Errors are wrong points, the sum
of missing points of the highlighted task subset, and excess points selected. The chart
suggests similar performance differences between the selection modes similar to speed
(Fig. 18) and accuracy (Fig. 19), yet overall, there is no significant main effect between
selection modes and errors.

33

Results User Experiment

Figure 21: All completion times per Task, n=28, total interactions=448

In figure 21, all completion times for all tasks are shown. Tasks are numbered like
P X [L , H] Y where X denotes the point cloud number (Skeleton = 2, Local Bubble = 3),
L or H denotes whether it is a low or high-complexity task, and Y denotes the task
number. Tasks are numbered from one to four in each of the four categories. The chart
shows the tasks divided by point cloud on the x-axis, with the high-complexity tasks
shown first. The chart suggests that high-complexity tasks require more time to com-
plete than low-complexity tasks. Also notable is the outlier P3L3, which is classified
as a low-complexity task yet took the most amount of time on average. Descriptive
statistics also suggest that the tasks on the skeleton point cloud take longer on aver-
age than on the local bubble point cloud. There is a large variance in completion time
between all tasks.

34

Results User Experiment

Figure 22: All scores per Task, n=28, total interactions=448

The distribution and mean scores per Task are shown in figure 22. Again, there are
noticeable differences between all tasks. The chart suggests again that high-complex-
ity tasks perform worse than low-complexity tasks. Notable is also the difference in
mean scores between the skeleton and local bubble point cloud and the difference in
variance between both clouds.

35

Results User Experiment

Figure 23: Error distribution per Task. Task P3L3 is not shown as its mean is too large
(17′000)

In figure 23, mean errors are shown per Task. Similar to scores in figure 22, a larger
number of errors have been made in the Skeleton point cloud. Additionally, the outlier
task P3L3 is omitted from view, as it had an average error of 17000 points, far exceed-
ing all other tasks.

36

Results User Experiment

a) Time b) Score

c) Errors d) Confidence
Figure 24: Grouped visualizations: a) Mean Speed, b) Mean score, c) Mean error, and

d) Mean confidence, all grouped by task complexity (n=28).
*** p < .001, ** p < .01, * p < .05

37

Results User Experiment

When task complexity is grouped, as seen in figure 24, significant differences between
task complexity on time, score, errors, and confidence become apparent. Easier tasks
were actually completed faster on average, with higher average precision and lower
wrong points. Participants also rated their selection with a significantly lower com-
plexity Task significantly higher.

Figure 25: Selection time grouped by selection techniques and point cloud
*** p < .001, ** p < .01, * p < .05

Figure 25 shows a selection time grouped technique, similar to figure 18, but it also
groups all by both point clouds. The point cloud has a significant effect on three out of
four selection techniques. Only with Brush Sphere are there no significant differences.

38

Results User Experiment

Figure 26: Weighted Scores per Point Cloud and Selection Technique(n=28)
*** p < .001, ** p < .01, * p < .05

The same applies to the weighted score (Fig. 26), where the point cloud significantly
affects the weighted score for three out of four selection techniques (all but Brush
Sphere). Regarding error (Fig. 27), point clouds have very significant effects on all se-
lection techniques.

39

Results User Experiment

Figure 27: Weighted Scores per Point Cloud and Selection Technique(n=28)
*** p < .001, ** p < .01, * p < .05

a) Time b) MRT score
Figure 28: Comparison of time in seconds and MRT scores grouped by gender.

*** p < .001, ** p < .01, * p < .05

40

Results User Experiment

When comparing gender differences (figure 28), only slight significant differences are
found in completion time, with women taking slightly longer than men. MRT scores
show very significant differences, and men score significantly higher on average. Re-
garding hypothesis H3, no significant effect of MRT score on task completion or ac-
curacy was found. When analyzing the effect of low and high MRT scores (split at the
median of 27 points), no significant effect was found on either selection time (F(1,446)
= 0.13, p = 0.71, 𝜂2𝑔 = 3e-04), score (F(1,401) = 0.23, p = 0.63, 𝜂2𝑔 = 0.00058) or errors
(F(1,394) = 0.05, p = 0.83, 𝜂2𝑔 = 0.00012). No significant effect of age on MRT score was
found (F(1,26) = 0.38, p = 0.54, 𝜂2𝑔 = 0.01).

a) Time b) Score
Figure 29: Comparison of time and weighted score grouped by age.

*** p < .001, ** p < .01, * p < .05

Comparing age differences, ages are grouped into two groups split by the median age.
This results in two bins of 16 young participants and 12 older participants. Only sig-
nificant differences between both groups in mean selection time and mean weighted
score can be found.

41

Results User Experiment

Figure 30: Average SUS Score for each Selection technique. (n=28)

Participants rated the Brush Sphere the highest on the SUS scale, closely followed by
the Brush Hands and then the Shapes mode. Convex Hull mode was rated slightly below
average for SUS scores with 64.82 points. Participants were also asked to rate each
technique on a 5-point Likert scale on intuitiveness which resulted in intuitiveness
scores being distributed similarly as with the SUS scores. Brush Sphere receveived a
4.71 rating (very intuitive), Brush Hands 4.32 points (very intuitive), Shapes 4.18 points
(intuitive) and Convex Hull got rated 3.36 (neutral/uncertain) on that scale.

a) Overall Satisfaction Distribution b) Willingness to Use Distribution
Figure 31: Comparison of overall satisfaction rating and willingness to use in future

(n=28).

When questioned on their overall satisfaction with the prototype, twelve responded
with a rating of 5, 14 with a rating of 4, and only two rated their satisfaction at 3. All
ratings were done on a 5-point Likert scale ranging from Very Dissatisfied = 1 to Very
Satisfied = 5. Most people would also use this VR prototype for 3D selection in the
future, if their work requires them to work with point cloud data. 24 out of 28 partic-

42

Results User Experiment

ipants rated their likeliness use with four or higher. Only four rated their likeliness to
use such an application, with 2 or 3.

a) Transform Intuitiveness b) Transform Accuracy
Figure 32: Comparison of transform intuitiveness and accuracy ratings (n=28).

Most participants found the transform gesture (double fist gesture) intuitive. They
rated its intuitiveness with 4 and 5 on the Likert scale, and six people rated it with
a 3. Accuracy was rated more diverse, with six people rating the transform mode’s
accuracy with a 5, twelve people with a 4, and ten people with a 3 or lower.

a) Hand Tracking Ratings b) Wish for Controllers
Figure 33: Comparison of hand tracking ratings and users’ wish for controllers (n=28)

Regarding hand-tracking accuracy, 23 people rated it four or higher, five rated it 3 on
the 5-point Likert scale, and only six out of 28 people wished they had controllers in-
stead of using hand-tracking.

43

Discussion

6 Discussion

The proposed 3D selection prototype for point cloud data, including four selection
techniques, was implemented and tested on performance, usability, and satisfaction
metrics in both a performance evaluation and a user experiment with 28 participants.
First, I’ll discuss the project’s contributions, and then I’ll discuss the results of the pre-
vious chapter (Chapter 4) and the prototype itself (Chapter 3). Finally, I will discuss
limitations and give an outlook on possible future work.

Contributions In this project, I developed a novel 3D selection prototype based upon
SDFs as selection volumes capable of querying near-arbitrary volumetric selection re-
gions in real time. The prototype can render and select up to 5 million points (on a
test machine) on a tethered VR headset without further optimizations using compute
shaders in a GPU-centric approach. Four manual selection techniques have been de-
veloped and validated using the prototype. Shapes and Brush Sphere are based upon
existing related work [28, 83–86, 56–58], but Convex Hull and Brush Hands are novel
selection techniques. Brush Hands especially highlights the capabilities of the SDF ap-
proach, as existing point querying approaches require extensive optimizations, if at all
possible, to support real-time changes in the selection volume. However, it is possible
to achieve this by combining a fast and real-time SDF generation algorithm with GPU
parallelization power. Additionally, a user experiment with 28 participants was carried
out, evaluating performance and usability of the selection techniques.

Selection Techniques Results show a significant effect of selection technique on se-
lection speed and weighted scores (accuracy). However, no such effect could be found
regarding errors, thereby only confirming hypothesis H1 that selection technique af-
fects time and accuracy for selection time and weighted scores only. Both brushing
selection techniques performed better than Shapes and Convex Hull in terms of speed
and accuracy score. These quantitative findings align well with subjective qualitative
results from the SUS scores where Brush Sphere and Brush Hands were rated highest.
However, surprisingly, they both resulted in slightly more errors overall, but no sta-
tistical significant difference was found in the error count. Over-selection of points
is known to happen with mid-air gestures as the user’s arm is less stable compare to
2D “tablet” interaction [98] and this effect seems to be stronger in brushing modes
compared to direct/immediate selection modes.

Participants rated the Convex Hull mode as the lowest on the SUS, but quantitative re-
sults only agree regarding accuracy. Despite being disliked by most participants com-
pared to the other selection modes, Convex Hull was not significantly slower, nor did it
result in significantly more errors. While the idea of the Convex Hull mode was to cre-

44

Discussion

ate a 3D volumetric lasso mode, users perceived it as too complicated and unintuitive.
Related work on 3D lasso selection techniques[99] showed increased performance for
3D lassos compared to 2D lassos; therefore, similar performance differences were ex-
pected for Convex Hull, which was not the case. There is no correlation between MRT
scores and SUS scores for the Convex Hull mode or any other metric. Compared to
the other selection modes, Convex Hull required higher spatial abilities and probably
resulted in a higher mental load, which might partly explain why it performed subjec-
tively worse. Due to the higher mental load, participants concentrated more during
this selection mode, resulting in slightly fewer errors. A more comprehensive and in-
depth explanation during the introduction could contribute to better subjective scores,
and probably, the accuracy of hand-tracking has an effect as well, but all mentioned
hypotheses warrant further research.

While users rated the first selection mode, Shapes, relatively high on the SUS, it per-
formed worse than both brushing modes but still slightly better than Convex Hull. A
reason for the overall lower performance of Shapes is its flexible selection approach.
Users had a free choice between all available volumes and, therefore, could solve a
task with as many selector shapes as they liked. Another factor that aligned well with
subjective feedback was hand-tracking accuracy, specifically when releasing a shape.
Often, the release of a shape results in a slight translation.

All selection techniques except the Convex Hull got good average SUS ratings of more
than 80, with Brush Sphere even with an excellent score of 88.3. Convex Hull received
a lower but okay score of 64.82. All selection techniques were successful and effective,
but the subjective data clearly show that Convex Hull needs considerable refinements.
The quantitative data shows that all techniques were effective, and qualitative user
feedback shows that all modes except Convex Hull are intuitive, answering the second
research question - “What are intuitive and effective manual (hand-tracked) selection
techniques for the user?”. Main takeaways of these results are that brushing techniques
performed better both quantitatively and qualitatively and that that a 3D lasso tech-
nique like Convex Hull need considerable improvements.

Compared to previous work [8], the transform mode with which users could translate,
scale and rotate the point cloud to their liking, was massively improved and did not
suffer from gesture detection problems. However, as the center of rotation and scaling
is the center pivot point of the point cloud, the interacton became unnatural for most
users as soon as they got very close or inside the point cloud. Users expected the point
cloud to zoom from the center point between both hands as well as rotate around that
point, which it did no do. While the center pivot point as center of rotation and scal-

45

Discussion

ing makes sense when transforming the point cloud from afar, it does require lots of
training and feels unnatural when transforming close to the point cloud.

Task Complexity significantly affected all metrics, accepting hypothesis H3. Partici-
pants had longer selection times, lower scores, more errors, and lower confidence with
high-complexity tasks. I defined tasks manually in advance based on subjective quali-
tative ratings and pilot results. Apart from one outlier (Task P3L3), results showed that
overall tasks were classified correctly, and low-complexity tasks performed better.

Task P3L3 was wrongly classified as a low-complexity task. The task required partic-
ipants to select half of the local bubble, split through the middle, so roughly 350′000
points. Using Shapes with a box shape, Convex Hull with a similar box-like shape was
expected to solve the task easily. But during the experiment it became clear that many
participants did not recognize the inherent box-like structure of the selection volume
and just started incrementally selecting as many points as possible. Maybe allowing
for more data analysis and exploration in future experiments before selection timing
starts could improve selection performance.

Point Clouds / Data Type Contrary to hypothesis H4, point cloud choice, i.e., data
type, significantly affected selection performance. Except for Brush Sphere with speed
and accuracy, participants performed significantly worse with all selection techniques
on the Skeleton point cloud. This difference stems partly from the overall shape of the
skeleton in combination with the transform mode participants had to use. The trans-
form mode scaled and rotated the point cloud from the point cloud’s center point. This
transformation makes sense if the viewpoint is far from the point cloud center. Closer
or inside the point cloud, this required a a little learning. While users rated the trans-
form mode intuitiveness high, its accuracy was rated slightly lower. The transform
modes’ usability issues, combined with the elongated shape of the skeleton, might
have resulted in overall longer selection times than with the local bubble point cloud.

MRT Unlike pilot results in earlier work [93], no influence of MRT scores on speed,
accuracy, or error could be found, rejecting hypothesis H2. MRT scores significantly
differed between genders, with males performing significantly better, confirming re-
sults from existing literature [100, 101]. There was a slightly significant effect of gender
on completion time, where male participants completed selection tasks faster. How-
ever, this effect is likely not due to MRT scores but possibly inherent sex differences
[102, 103]. Results suggest a slight correlation between MRT score and completion
time for male participants, but the sample size is too small for inferential conclusions.

46

Discussion

Computational Performance Both the point rendering and the selection compute
shader scale with 𝑂(𝑛) as they scale with the total number of points and iterate over
all points of the point cloud. This can clearly be seen by the perfect linear correlation
between execution time and the number of points in section 4.1. Notable, however, is
the significant difference in execution time between both shaders, with the instanced
indirect rendering pipeline taking significantly longer than the selection calculation
of all points. If ten selectors were in the scene, which effectively runs the selection
compute shader ten times, the rendering of the points still takes more than twice as
long. On an average use case, around five selectors were present at a maximum per
selection task, with the average being a lot closer to 1.

While the prototype can handle point clouds of up to 5 million points (on the test ma-
chine) without further optimizations, it must be mentioned that the selection algorith-
m’s performance is not the application’s bottleneck. The bottleneck is the rendering
of the point cloud itself. The selection algorithm is high-speed, thanks to the GPU of-
floading, and the brute-force approach is more than sufficient for the this use case. The
selection algorithm is so fast that it only becomes a problem after around 10 million
points (on a test machine), much more than the average point cloud size in the current
use case.

SDF baking is done in constant time of 1ms-1.25ms per selector and usually never hap-
pens at the same time and only once for each selector as in this use case they are never
created at the same time. For the Brush Hands mode this means a constant 2ms addi-
tional frametime as both hands need live recalculation. But during experiments and
tests no performance drawback has been noticed. This brute-force approach and its
linear growth become a problem for massive point clouds and extensive optimizations
are needed (see section 6.2). Overall, the prototype’s performance is good. It showcases
the speed of the GPU-based SDF selection algorithm for arbitrary mesh based selection
volumes.

Framerates measured on the Meta Quest Pro are around 66fps for point clouds up to
5 million points while the selection compute shader runs. They are roughly 20 frames
higher when rendering the point cloud without running the selection compute shader.
While a steady framerate of at least 90 fps is recommended for XR applications, the
prototype still performs well within the acceptable range and is performing similarly
to related work [28]. No issues were observed during the user tests (apart from two
people known to suffer from motion sickness). But future iterations of this prototype
must address these performance issues.

47

Discussion

While related approaches that focused more on optimized rendering of point clouds
in Unity have also better selection performance [28] for massive point clouds, they
are not capable of selecting points from arbitrary selection volumes like in this work
and are limited to spherical or cuboid shapes. The technological approach in this work,
validated through a user experiment testing four different selection technique clearly
answers the first reseach question - “How can points inside an arbitrary selection vol-
ume be computationally selected and queried in a fast manner?”. It might not be the
fastest solution compared to existing query speeds of tree-like data structures but by
attaching the selection process to the render pipeline allows for near-arbitrary selec-
tion volumes of even complex meshes.

6.1 Limitations

This work has potential limitations. Participants were recruited mainly from the com-
puter science institutes at the FHNW, but friends and family from varying backgrounds
also took part. This allowed for a varied sample size, but this might have been a sample
bias due to the large number of participants with prior VR experience (24/28). Addi-
tionally, having had friends and family participate allowed for higher sample sizes but
also might have introduced a response bias. Both biases could have been mitigated by
recruiting a larger and more diverse sample size with more people without VR expe-
rience and preferably with less people from friends and family.

Concerning the user experiment, there were technological limitations mainly originat-
ing from hand-tracking inaccuracies in the Meta Quest Pro. This headset was chosen
for its practicality and availability but, in hindsight, did not have the best hand-track-
ing on the market. Hand-tracking performance was, in my opinion, still excellent, as
most participants self-reported. For future iterations of the project I would suggest us-
ing either a Ultraleap based hand-tracking system [82] attached to the tethered headset
or future better iterations of Meta headsets with improved hand-tracking.

Data was collected the same way during all user experiments using an editor script
in Unity. Accuracy was recorded and calculated automatically and while time was
also recorded automatically, it was started manually, potentially leading to inconsis-
tent data collection or errors. Additionally, I instructed all participants and personally
showed them how to use the application. This tutorial session was subject to vari-
ance and human error and might have resulted in some participants getting a little
more explanation than others. The same limitation also applied during testing, where I
answered participant’s questions. These limitations could have been mitigated by au-
tomating the data recording even further and showing a video in the tutorial session
for example.

48

Discussion Limitations

6.2 Future Work

Performance Enhancements Future work must include performance improvements
to allow the application to scale and handle massive point clouds. Computational per-
formance results show that the application is usable until a few million points. There-
fore, implementing at least a decimated point cloud approach [26, 27] is essential and
could guarantee a maximum number of points per frame. This would allow for efficient
rendering by reducing the computational complexity while keeping the visual fidelity
of the data.

With the current GPU-centric approach, even if render and selection execution times
were fine, massive point clouds could not be rendered as they would not fit into GPU
memory. An out-of-core octree approach [26, 27] could enable dynamic loading of only
necessary data. It is paramount to limit the data transfer between CPU and GPU, so
this solution needs careful consideration and optimizations.

Another possible approach to enhancing performance is frustum culling, where only
visible points are actually rendered. However, this technique would only partially im-
prove performance when not all points are in view. Therefore, frustum culling is best
combined with both techniques mentioned above.

Selection Techniques Advancing brushing techniques is also crucial for improving
the precision and intuitiveness of the selection process within point clouds, and future
research should focus on refining these methods to enhance user interaction. The cur-
rent reliance on convex hulls in the second Convex Hull selection mode has inherent
limitations, especially when dealing with non-convex shapes. Future work should as-
sess whether convex hulls are truly intuitive for users and explore ways to enable the
drawing of concave shapes to enhance selection accuracy and allow more flexibility.

Integrating mesh sculpting techniques from established sculpting software could sig-
nificantly improve selection capabilities. Collaborating with experts or implementing
similar systems would allow for more versatile and user-friendly shape generation,
increasing the system’s overall flexibility. By integrating mesh sculpting techniques
from tools like ShapesXR[104], the system could become more powerful and versatile,
with enhanced selection capabilities for complex shapes.

While this project only focused on manual selection techniques, it seems sensible and
feasable to integrate automated techniques or even techniques leveraging AI. Techni-
cally, future AI-powered selection techniques just need to be able to generate a mesh

49

Discussion Future Work

or SDF as a selectin volume in order to integrate such techniques with the proposed
SDF based workflow.

The transform mode needs further refinement and a solution needs to be found on
how to translate, scale and rotate a point cloud with gestures from within the point
cloud. A transform mode massively helps the user for both exploration and correct
placement of the point cloud for selection tasks.

This work concentrated on a selection approach using SDFs and evaluated each selec-
tion technique separately. But earlier pilot work [8] already showed that users prefer
having multiple selection techniques at their disposal. This allows users to freely com-
bine techniques and use the most appropriate mode. User preference and performance
on a task where they had free choice over selection modes was emmited from the user
experiment for time reasons. Nonetheless, in future versions of this or similar appli-
cations it is of paramount importance to present the user with an optimal selection of
diverse selection techniques.

Possible other selection techniques and interactions to look into in the future might
include: A slicing metaphor similar to [61, 63], either volumetric or gesture based. Due
to the ineherent nature of SDFs it would be relatively easy to implement a high-light
effect when a selection volumes or hands gets close to a point. This might help with
dense point clouds sections and applications similar to [105].

In the current state of the prototype, only direct/immediate and brushing selection can
be performed. There is no possibility to combine several selection shapes with boolean
operations as it is common in 2D software [3]. SDFs inherently also make boolean
operations between them relatively simple and therefore are optimally suited for ap-
plications with volumetric boolean operations. Some form of Undo/Redo functionality
was also mentioned by users as in the current state, participants had to reset the whole
selection when they were not happy with their selection and wanted to restart. Simi-
larly to the last point, allowing for progressive refinement has been shown to increase
accuracy over direct/immediate selection techniques [106].

Integrations To expand this project’s applicability and reach, it is essential to focus
on integrating the system with other visualization and selection software. This inte-
gration would involve refining the product to a more polished and finished state and
developing pipelines that enable data streaming from external software into the Unity
environment in real-time. With such integration, the system could become a versatile
tool that complements and enhances existing workflows, making it more valuable to
a broader range of users in various fields.

50

Discussion Future Work

Furthermore, with the rapid advancements in WebGPU and WebXR technologies,
there is significant potential to port this system to the web, thereby expanding its ac-
cessibility to a broader audience. A web-based version of the system could be partic-
ularly beneficial for teams focused on web-based visualization and interaction. Mak-
ing the system available online could be used in various contexts, from educational
settings to collaborative research environments, without the need for specialized soft-
ware installations. This move towards web integration would pave the way for new
opportunities in remote collaboration, data analysis, and selection.

51

Conclusion

7 Conclusion

This thesis successfully developed and validated a novel approach for 3D point cloud
selection in XR environments, leveraging a GPU-centric and SDF-based approach for
efficient, real-time selection of arbitrary volumes. The primary objective was to ad-
dress the limitations of traditional 2D interfaces and existing 3D selection techniques,
which often lack precision and are not optimized for complex selection shapes. By
implementing and testing various selection techniques within Unity, this research sig-
nificantly contributes to the field of 3D data interaction.

At the core of this work is the development of a GPU-based SDF selection method,
allowing users to interact with and select near-arbitrary subsets of point clouds in real
time. This approach proved efficient and scalable, handling up to a few million points
without significant performance degradation and optimizations. The research intro-
duced four distinct selection techniques, each offering different interaction paradigms
to cater to user preferences and task requirements. These techniques were validated
through a comprehensive user experiment involving 28 participants, providing valu-
able quantitative and qualitative feedback on their effectiveness and usability.

The user study demonstrated the prototype’s functionality and offered crucial insights
into user preferences and performance. Notably, the results revealed a clear preference
for brushing techniques over direct selection modes, with the Brush Sphere and Brush
Hands methods receiving high ratings for their intuitiveness and usability. Addition-
ally, Convex Hull, the 3D lasso selection technique, was not well received by the users
yet performed only slightly worse compared to the other techniques, warranting fu-
ture research and improvements. These findings underscore the importance of user-
centered design in enhancing the overall experience in XR environments.

Overall, this thesis bridges the gap between traditional 2D methods and modern XR
technologies, offering a robust 3D point cloud selection solution. The research demon-
strates that it is possible to create intuitive, efficient, and user-friendly systems for
interacting with complex 3D data with the right tools and approaches. The contribu-
tions made in this work not only advance the state of the art in XR interaction but also
open up new possibilities for future developments in this rapidly evolving field.

52

Statement of Authenticity

Statement of Authenticity

I confirm that this master’s thesis was written autonomously by me using only the
sources, aids, and assistance stated in the report, and that any work adopted from other
sources, which was written as part of this thesis, is duly cited and referenced as such.

Brugg-Windisch,

Luca Fluri

53

Bibliography

Bibliography
[1] A. Fonnet and Y. Prié, “Survey of Immersive Analytics,” IEEE Transactions on

Visualization and Computer Graphics, vol. 27, no. 3, pp. 2101–2122, Mar. 2021,
doi: 10.1109/TVCG.2019.2929033.

[2] B. Bach, R. Dachselt, S. Carpendale, T. Dwyer, C. Collins, and B. Lee, “Immer-
sive Analytics: Exploring Future Interaction and Visualization Technologies for
Data Analytics,” in Proceedings of the 2016 ACM International Conference on In-
teractive Surfaces and Spaces, in ISS '16. New York, NY, USA: Association for
Computing Machinery, Nov. 2016, pp. 529–533. doi: 10.1145/2992154.2996365.

[3] T. Robitaille, C. Beaumont, P. Qian, M. Borkin, and A. Goodman, “glueviz
v0.13.1: multidimensional data exploration,” Zenodo, Feb. 2017, doi: 10.5281/
zenodo.1237692.

[4] QGIS Development Team, “QGIS: A Free and Open Source Geographic Infor-
mation System.” [Online]. Available: https://www.qgis.org/

[5] Tableau Software, “Tableau: Business Intelligence and Analytics Software.” [On-
line]. Available: https://www.tableau.com/

[6] J. P. McIntire and K. K. Liggett, “The (possible) utility of stereoscopic 3D dis-
plays for information visualization: The good, the bad, and the ugly,” in 2014
IEEE VIS International Workshop on 3DVis (3DVis), Nov. 2014, pp. 1–9. doi:
10.1109/3DVis.2014.7160093.

[7] J. P. McIntire, P. R. Havig, and E. E. Geiselman, “Stereoscopic 3D displays and
human performance: A comprehensive review,” Displays, vol. 35, no. 1, pp. 18–
26, Jan. 2014, doi: 10.1016/j.displa.2013.10.004.

[8] L. Fluri and A. Cöltekin, “3D Data Selection in XR,” Sep. 2023.

[9] P. MILGRAM and F. KISHINO, “A Taxonomy of Mixed Reality Visual Displays,”
Dec. 1994, Accessed: Aug. 17, 2024. [Online]. Available: https://search.ieice.org/
bin/summary.php?id=e77-d_12_1321

[10] R. T. Azuma, “A Survey of Augmented Reality,” Presence: Teleoperators and
Virtual Environments, vol. 6, no. 4, pp. 355–385, Aug. 1997, doi: 10.1162/
pres.1997.6.4.355.

[11] M. Billinghurst, A. Clark, and G. Lee, “A Survey of Augmented Reality,” Foun-
dations and Trends® in Human–Computer Interaction, vol. 8, no. 2–3, pp. 73–272,
Mar. 2015, doi: 10.1561/1100000049.

[12] “A systematic review of immersive virtual reality applications for higher edu-
cation: Design elements, lessons learned, and research agenda - ScienceDirect.”

54

https://doi.org/10.1109/TVCG.2019.2929033
https://doi.org/10.1145/2992154.2996365
https://doi.org/10.5281/zenodo.1237692
https://doi.org/10.5281/zenodo.1237692
https://www.qgis.org/
https://www.tableau.com/
https://doi.org/10.1109/3DVis.2014.7160093
https://doi.org/10.1016/j.displa.2013.10.004
https://search.ieice.org/bin/summary.php?id=e77-d_12_1321
https://search.ieice.org/bin/summary.php?id=e77-d_12_1321
https://doi.org/10.1162/pres.1997.6.4.355
https://doi.org/10.1162/pres.1997.6.4.355
https://doi.org/10.1561/1100000049

Bibliography

Accessed: Aug. 17, 2024. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0360131519303276

[13] S. Jayaram, J. Vance, R. Gadh, U. Jayaram, and H. Srinivasan, “Assessment of
VR Technology and its Applications to Engineering Problems,” Journal of Com-
puting and Information Science in Engineering, vol. 1, no. 1, pp. 72–83, Jan. 2001,
doi: 10.1115/1.1353846.

[14] M. Hmoud, H. Swaity, O. Karram, H. Shibli, S. Swaity, and W. Daher, “High
School Students’ Engagement in Biology in the Context of XR Technology,” IEEE
Access, vol. 11, pp. 137053–137066, 2023, doi: 10.1109/ACCESS.2023.3338176.

[15] “XR collaboration beyond virtual reality: work in the real world | Journal of
Computational Design and Engineering | Oxford Academic.” Accessed: Aug.
20, 2024. [Online]. Available: https://academic.oup.com/jcde/article/8/2/756/
6175348?login=false

[16] V. Angelov, E. Petkov, G. Shipkovenski, and T. Kalushkov, “Modern Virtual Re-
ality Headsets,” in 2020 International Congress on Human-Computer Interaction,
Optimization and Robotic Applications (HORA), Jun. 2020, pp. 1–5. doi: 10.1109/
HORA49412.2020.9152604.

[17] A. Patney et al., “Towards foveated rendering for gaze-tracked virtual reality,”
ACM Trans. Graph., vol. 35, no. 6, pp. 1–12, 2016, doi: 10.1145/2980179.2980246.

[18] R. Albert, A. Patney, D. Luebke, and J. Kim, “Latency Requirements for Foveated
Rendering in Virtual Reality,” ACM Trans. Appl. Percept., vol. 14, no. 4, pp. 1–13,
Sep. 2017, doi: 10.1145/3127589.

[19] G. Buckingham, “Hand Tracking for Immersive Virtual Reality: Opportunities
and Challenges,” Frontiers in Virtual Reality, vol. 2, Oct. 2021, doi: 10.3389/
frvir.2021.728461.

[20] C. Mizera, T. Delrieu, V. Weistroffer, C. Andriot, A. Decatoire, and J.-P. Gazeau,
“Evaluation of Hand-Tracking Systems in Teleoperation and Virtual Dexterous
Manipulation,” IEEE Sensors Journal, vol. 20, no. 3, pp. 1642–1655, Feb. 2020, doi:
10.1109/JSEN.2019.2947612.

[21] “Echtzeit-3D-Entwicklungsplattform und Editor.” Accessed: Aug. 20, 2024. [On-
line]. Available: https://unity.com/products/unity-engine

[22] Epic Games, “Unreal Engine: The Most Powerful Real-Time 3D Creation
Tool.” [Online]. Available: https://www.unrealengine.com/en-US

[23] “Unity vs Unreal Engine: Pros and Cons [2024 Overview].” Accessed: Aug. 20,
2024. [Online]. Available: https://program-ace.com/blog/unity-vs-unreal/

55

https://www.sciencedirect.com/science/article/pii/S0360131519303276
https://www.sciencedirect.com/science/article/pii/S0360131519303276
https://doi.org/10.1115/1.1353846
https://doi.org/10.1109/ACCESS.2023.3338176
https://academic.oup.com/jcde/article/8/2/756/6175348?login=false
https://academic.oup.com/jcde/article/8/2/756/6175348?login=false
https://doi.org/10.1109/HORA49412.2020.9152604
https://doi.org/10.1109/HORA49412.2020.9152604
https://doi.org/10.1145/2980179.2980246
https://doi.org/10.1145/3127589
https://doi.org/10.3389/frvir.2021.728461
https://doi.org/10.3389/frvir.2021.728461
https://doi.org/10.1109/JSEN.2019.2947612
https://unity.com/products/unity-engine
https://www.unrealengine.com/en-US
https://program-ace.com/blog/unity-vs-unreal/

Bibliography

[24] K. Zhou, Q. Hou, R. Wang, and B. Guo, “Real-time KD-tree construction on
graphics hardware,” ACM Trans. Graph., vol. 27, no. 5, pp. 1–11, 2008, doi:
10.1145/1409060.1409079.

[25] S. Peters, “Quadtree- and octree-based approach for point data selection
in 2D or 3D,” Annals of GIS, vol. 19, no. 1, pp. 37–44, Mar. 2013, doi:
10.1080/19475683.2012.758171.

[26] M. Schütz, S. Ohrhallinger, and M. Wimmer, “Fast Out-of-Core Octree Gener-
ation for Massive Point Clouds,” Computer Graphics Forum, vol. 39, no. 7, pp.
1–13, Nov. 2020, doi: 10.1111/cgf.14134.

[27] E. Neuman-Donihue, M. Jarvis, and Y. Zhu, “FastPoints: A State-of-the-Art Point
Cloud Renderer for Unity.” [Online]. Available: https://arxiv.org/abs/2302.05002

[28] J.-P. Virtanen et al., “Interactive dense point clouds in a game engine,” ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 163, pp. 375–389, May 2020,
doi: 10.1016/j.isprsjprs.2020.03.007.

[29] L. Liu, X. Yu, W. Wan, H. Yu, and R. Liu, “Rendering of large-scale 3D
terrain point cloud based on out-of-core,” in 2012 International Conference
on Audio, Language and Image Processing, 2012, pp. 740–744. doi: 10.1109/
ICALIP.2012.6376712.

[30] OpenVDB Development Team, “OpenVDB: An Open-Source Sparse Volume
Data Format.” [Online]. Available: https://www.openvdb.org/

[31] R. Gaugne, Q. Petit, J.-B. Barreau, and V. Gouranton, “Interactive and Immersive
Tools for Point Clouds in Archaeology.”

[32] D. Bonatto, S. Rogge, A. Schenkel, R. Ercek, and G. Lafruit, “Explorations for
real-time point cloud rendering of natural scenes in virtual reality,” in 2016 In-
ternational Conference on 3D Imaging (IC3D), Dec. 2016, pp. 1–7. doi: 10.1109/
IC3D.2016.7823453.

[33] “External memory algorithm.” Accessed: Aug. 20, 2024.
[Online]. Available: https://en.wikipedia.org/w/index.php?title=External_
memory_algorithm&oldid=1222814748

[34] S. Discher, R. Richter, and J. Döllner, “Concepts and techniques for web-
based visualization and processing of massive 3D point clouds with seman-
tics,” Graphical Models, vol. 104, p. 101036–101037, Jul. 2019, doi: 10.1016/
j.gmod.2019.101036.

[35] I. Quilez, “Inigo Quilez.” Accessed: Aug. 21, 2024. [Online]. Available: https://
iquilezles.org/

56

https://doi.org/10.1145/1409060.1409079
https://doi.org/10.1080/19475683.2012.758171
https://doi.org/10.1111/cgf.14134
https://arxiv.org/abs/2302.05002
https://doi.org/10.1016/j.isprsjprs.2020.03.007
https://doi.org/10.1109/ICALIP.2012.6376712
https://doi.org/10.1109/ICALIP.2012.6376712
https://www.openvdb.org/
https://doi.org/10.1109/IC3D.2016.7823453
https://doi.org/10.1109/IC3D.2016.7823453
https://en.wikipedia.org/w/index.php?title=External_memory_algorithm&oldid=1222814748
https://en.wikipedia.org/w/index.php?title=External_memory_algorithm&oldid=1222814748
https://doi.org/10.1016/j.gmod.2019.101036
https://doi.org/10.1016/j.gmod.2019.101036
https://iquilezles.org/
https://iquilezles.org/

Bibliography

[36] P.-E. Danielsson, “Euclidean distance mapping,” Computer Graphics and image
processing, vol. 14, no. 3, pp. 227–248, 1980.

[37] J. C. Hart, “Sphere tracing: A geometric method for the antialiased ray tracing
of implicit surfaces,” The Visual Computer, vol. 12, no. 10, pp. 527–545, 1996.

[38] P. Liu, Y. Zhang, H. Wang, M. K. Yip, E. S. Liu, and X. Jin, “Real-time collision
detection between general SDFs,” Computer Aided Geometric Design, vol. 111, p.
102305–102306, Jun. 2024, doi: 10.1016/j.cagd.2024.102305.

[39] P. López-Adeva Fernández-Layos and L. F. S. Merchante, “Convex Body Colli-
sion Detection Using the Signed Distance Function,” Computer-Aided Design,
vol. 170, p. 103685–103686, May 2024, doi: 10.1016/j.cad.2024.103685.

[40] X. Zheng, Y. Liu, P. Wang, and X. Tong, “SDF-StyleGAN: Implicit SDF-Based
StyleGAN for 3D Shape Generation,” Computer Graphics Forum, vol. 41, no. 5,
pp. 52–63, 2022, doi: 10.1111/cgf.14602.

[41] L. Shapira, A. Shamir, and D. Cohen-Or, “Consistent mesh partitioning and
skeletonisation using the shape diameter function,” The Visual Computer, vol.
24, no. 4, pp. 249–259, Apr. 2008, doi: 10.1007/s00371-007-0197-5.

[42] X. Chermain, S. Lucas, B. Sauvage, J.-M. Dischler, and C. Dachsbacher,
“Real-Time Geometric Glint Anti-Aliasing with Normal Map Filtering,” Proc.
ACM Comput. Graph. Interact. Tech., vol. 4, no. 1, pp. 1–16, Apr. 2021, doi:
10.1145/3451257.

[43] H. H. Söderlund, A. Evans, and T. Akenine-Möller, “Path Tracing of Signed Dis-
tance Function Grids,” vol. 11, no. 3, 2022.

[44] M. Wimmer, J. Hladuvka, and M. Ilcik, “Proceedings of the 14th Central Euro-
pean Seminar on Computer Graphics.”

[45] D. Seyb, A. Jacobson, D. Nowrouzezahrai, and W. Jarosz, “Non-linear sphere
tracing for rendering deformed signed distance fields,” ACM Transactions on
Graphics, vol. 38, no. 6, pp. 1–12, Dec. 2019, doi: 10.1145/3355089.3356502.

[46] S. Liu, Y. Zhang, S. Peng, B. Shi, M. Pollefeys, and Z. Cui, “DIST: Render-
ing Deep Implicit Signed Distance Function With Differentiable Sphere Trac-
ing,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), Seattle, WA, USA: IEEE, Jun. 2020, pp. 2016–2025. doi: 10.1109/
CVPR42600.2020.00209.

[47] H. Xu and J. Barbič, “Signed Distance Fields for Polygon Soup Meshes,” Graphics
Interface 2014. A K Peters/CRC Press, 2014.

57

https://doi.org/10.1016/j.cagd.2024.102305
https://doi.org/10.1016/j.cad.2024.103685
https://doi.org/10.1111/cgf.14602
https://doi.org/10.1007/s00371-007-0197-5
https://doi.org/10.1145/3451257
https://doi.org/10.1145/3355089.3356502
https://doi.org/10.1109/CVPR42600.2020.00209
https://doi.org/10.1109/CVPR42600.2020.00209

Bibliography

[48] J. Baerentzen, “Robust generation of signed distance fields from triangle
meshes,” in Fourth International Workshop on Volume Graphics, 2005., 2005, pp.
167–239. doi: 10.1109/VG.2005.194111.

[49] Y. Wu, J. Man, and Z. Xie, “A double layer method for constructing signed dis-
tance fields from triangle meshes,” Graphical Models, vol. 76, no. 4, pp. 214–223,
Jul. 2014, doi: 10.1016/j.gmod.2014.04.011.

[50] J. Baerentzen and H. Aanaes, “Signed distance computation using the angle
weighted pseudonormal,” IEEE Transactions on Visualization and Computer
Graphics, vol. 11, no. 3, pp. 243–253, May 2005, doi: 10.1109/TVCG.2005.49.

[51] C. Sigg, R. Peikert, and M. Gross, “Signed distance transform using graphics
hardware,” in IEEE Visualization, 2003. VIS 2003., Oct. 2003, pp. 83–90. doi:
10.1109/VISUAL.2003.1250358.

[52] “Unity-Technologies/com.unity.demoteam.mesh-to-sdf.” Accessed: Aug. 18,
2024. [Online]. Available: https://github.com/Unity-Technologies/com.unity.
demoteam.mesh-to-sdf

[53] D. Shervheim, “danielshervheim/unity-sdf-generator.” Accessed: Aug. 18, 2024.
[Online]. Available: https://github.com/danielshervheim/unity-sdf-generator

[54] Unity, “SDF Bake Tool | Visual Effect Graph | 17.0.3.” [Online]. Available:
https://docs.unity3d.com/Packages/com.unity.visualeffectgraph@17.0/manual/
sdf-bake-tool.html

[55] R. A. Montano-Murillo, C. Nguyen, R. H. Kazi, S. Subramanian, S. DiVerdi,
and D. Martinez-Plasencia, “Slicing-Volume: Hybrid 3D/2D Multi-target Selec-
tion Technique for Dense Virtual Environments,” in 2020 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR), Mar. 2020, pp. 53–62. doi: 10.1109/
VR46266.2020.00023.

[56] R. Burgess et al., “Selection of Large-Scale 3D Point Cloud Data Using Gesture
Recognition,” in Technological Innovation for Cloud-Based Engineering Systems,
L. M. Camarinha-Matos, T. A. Baldissera, G. Di Orio, and F. Marques, Eds., in
IFIP Advances in Information and Communication Technology. Cham: Springer
International Publishing, 2015, pp. 188–195. doi: 10.1007/978-3-319-16766-4_20.

[57] F. Homps, Y. Beugin, and R. Vuillemot, “ReViVD: Exploration and Filtering of
Trajectories in an Immersive Environment using 3D Shapes,” in 2020 IEEE Con-
ference on Virtual Reality and 3D User Interfaces (VR), Mar. 2020, pp. 729–737.
doi: 10.1109/VR46266.2020.00096.

[58] D. Garrido, R. Rodrigues, A. Augusto Sousa, J. Jacob, and D. Castro Silva, “Point
Cloud Interaction and Manipulation in Virtual Reality,” in 2021 5th International
Conference on Artificial Intelligence and Virtual Reality (AIVR), in AIVR 2021.

58

https://doi.org/10.1109/VG.2005.194111
https://doi.org/10.1016/j.gmod.2014.04.011
https://doi.org/10.1109/TVCG.2005.49
https://doi.org/10.1109/VISUAL.2003.1250358
https://github.com/Unity-Technologies/com.unity.demoteam.mesh-to-sdf
https://github.com/Unity-Technologies/com.unity.demoteam.mesh-to-sdf
https://github.com/danielshervheim/unity-sdf-generator
https://docs.unity3d.com/Packages/com.unity.visualeffectgraph@17.0/manual/sdf-bake-tool.html
https://docs.unity3d.com/Packages/com.unity.visualeffectgraph@17.0/manual/sdf-bake-tool.html
https://doi.org/10.1109/VR46266.2020.00023
https://doi.org/10.1109/VR46266.2020.00023
https://doi.org/10.1007/978-3-319-16766-4_20
https://doi.org/10.1109/VR46266.2020.00096

Bibliography

New York, NY, USA: Association for Computing Machinery, Nov. 2021, pp. 15–
20. doi: 10.1145/3480433.3480437.

[59] M. Baloup, T. Pietrzak, and G. Casiez, “RayCursor: A 3D Pointing Facilita-
tion Technique based on Raycasting,” in Proceedings of the 2019 CHI Con-
ference on Human Factors in Computing Systems, in CHI '19. New York,
NY, USA: Association for Computing Machinery, May 2019, pp. 1–12. doi:
10.1145/3290605.3300331.

[60] E. Laukka, “Comparing hand tracking and controller-based interactions for a
virtual reality learning application.” Accessed: Aug. 17, 2024. [Online]. Avail-
able: https://oulurepo.oulu.fi/handle/10024/17496

[61] P. Lubos, R. Beimler, M. Lammers, and F. Steinicke, “Touching the Cloud: Bi-
manual annotation of immersive point clouds,” in 2014 IEEE Symposium on 3D
User Interfaces (3DUI), Mar. 2014, pp. 191–192. doi: 10.1109/3DUI.2014.6798885.

[62] K. A. Siek, Y. Rogers, and K. H. Connelly, “Fat Finger Worries: How Older and
Younger Users Physically Interact with PDAs,” Human-Computer Interaction -
INTERACT 2005, vol. 3585. Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
267–280, 2005. doi: 10.1007/11555261_24.

[63] F. Bacim, M. Nabiyouni, and D. A. Bowman, “Slice-n-Swipe: A free-hand gesture
user interface for 3D point cloud annotation,” in 2014 IEEE Symposium on 3D
User Interfaces (3DUI), Mar. 2014, pp. 185–186. doi: 10.1109/3DUI.2014.6798882.

[64] M. Sereno, M. Ammi, T. Isenberg, and L. Besançon, “Tangible Brush: Performing
3D Selection with Portable and Position-aware Devices,” Oct. 2016. Accessed:
Nov. 01, 2022. [Online]. Available: https://hal.inria.fr/hal-01372925

[65] L. Besançon, P. Issartel, M. Ammi, and T. Isenberg, “Hybrid Tactile/Tangi-
ble Interaction for 3D Data Exploration,” IEEE Transactions on Visualization
and Computer Graphics, vol. 23, no. 1, pp. 881–890, Jan. 2017, doi: 10.1109/
TVCG.2016.2599217.

[66] L. Besançon, M. Sereno, L. Yu, M. Ammi, and T. Isenberg, “Hybrid Touch/Tan-
gible Spatial 3D Data Selection,” Computer Graphics Forum, vol. 38, no. 3, pp.
553–567, Jun. 2019, doi: 10.1111/cgf.13710.

[67] Z. Chen, W. Zeng, Z. Yang, L. Yu, C.-W. Fu, and H. Qu, “LassoNet: Deep Lasso-
Selection of 3D Point Clouds,” IEEE Transactions on Visualization and Computer
Graphics, vol. 26, no. 1, pp. 195–204, Jan. 2020, doi: 10.1109/TVCG.2019.2934332.

[68] L. Yu, K. Efstathiou, P. Isenberg, and T. Isenberg, “CAST: Effective and Efficient
User Interaction for Context-Aware Selection in 3D Particle Clouds,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 886–895, Jan.
2016, doi: 10.1109/TVCG.2015.2467202.

59

https://doi.org/10.1145/3480433.3480437
https://doi.org/10.1145/3290605.3300331
https://oulurepo.oulu.fi/handle/10024/17496
https://doi.org/10.1109/3DUI.2014.6798885
https://doi.org/10.1007/11555261_24
https://doi.org/10.1109/3DUI.2014.6798882
https://hal.inria.fr/hal-01372925
https://doi.org/10.1109/TVCG.2016.2599217
https://doi.org/10.1109/TVCG.2016.2599217
https://doi.org/10.1111/cgf.13710
https://doi.org/10.1109/TVCG.2019.2934332
https://doi.org/10.1109/TVCG.2015.2467202

Bibliography

[69] L. Yu, K. Efstathiou, P. Isenberg, and T. Isenberg, “Efficient Structure-Aware Se-
lection Techniques for 3D Point Cloud Visualizations with 2DOF Input,” IEEE
Transactions on Visualization and Computer Graphics, vol. 18, no. 12, pp. 2245–
2254, Dec. 2012, doi: 10.1109/TVCG.2012.217.

[70] J. Lalonde, R. Unnikrishnan, N. Vandapel, and M. Hebert, “Scale selection for
classification of point-sampled 3D surfaces,” in Fifth International Conference
on 3-D Digital Imaging and Modeling (3DIM'05), Jun. 2005, pp. 285–292. doi:
10.1109/3DIM.2005.71.

[71] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning on Point
Sets for 3D Classification and Segmentation.” Accessed: Nov. 15, 2022. [Online].
Available: http://arxiv.org/abs/1612.00593

[72] J. J. L. Jr, E. Kruijff, R. P. McMahan, D. Bowman, and I. P. Poupyrev, 3D User
Interfaces: Theory and Practice. Addison-Wesley Professional, 2017.

[73] M. Slater, “Place illusion and plausibility can lead to realistic behaviour in im-
mersive virtual environments,” Philosophical Transactions of the Royal Society
B: Biological Sciences, vol. 364, no. 1535, pp. 3549–3557, Dec. 2009, doi: 10.1098/
rstb.2009.0138.

[74] R. P. McMahan, D. A. Bowman, D. J. Zielinski, and R. B. Brady, “Evaluating Dis-
play Fidelity and Interaction Fidelity in a Virtual Reality Game,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 18, no. 4, pp. 626–633, Apr.
2012, doi: 10.1109/TVCG.2012.43.

[75] B. G. Witmer and M. J. Singer, “Measuring Presence in Virtual Environments: A
Presence Questionnaire,” Presence: Teleoperators and Virtual Environments, vol.
7, no. 3, pp. 225–240, Jun. 1998, doi: 10.1162/105474698565686.

[76] J. J. LaViola, “A discussion of cybersickness in virtual environments,” SIGCHI
Bull., vol. 32, no. 1, pp. 47–56, Jan. 2000, doi: 10.1145/333329.333344.

[77] J. F. Dumas and J. C. Redish, A Practical Guide to Usability Testing. USA: Green-
wood Publishing Group Inc., 1993.

[78] J. Bailenson, Experience on Demand: What Virtual Reality Is, How It Works, and
What It Can Do. W. W. Norton & Company, 2018.

[79] J. Linietsky and A. Manzur, “Godot Engine - Free and open source 2D and 3D
game engine.” Accessed: Jul. 30, 2024. [Online]. Available: https://godotengine.
org/

[80] C. Khundam, V. Vorachart, P. Preeyawongsakul, W. Hosap, and F. Noël, “A Com-
parative Study of Interaction Time and Usability of Using Controllers and Hand

60

https://doi.org/10.1109/TVCG.2012.217
https://doi.org/10.1109/3DIM.2005.71
http://arxiv.org/abs/1612.00593
https://doi.org/10.1098/rstb.2009.0138
https://doi.org/10.1098/rstb.2009.0138
https://doi.org/10.1109/TVCG.2012.43
https://doi.org/10.1162/105474698565686
https://doi.org/10.1145/333329.333344
https://godotengine.org/
https://godotengine.org/

Bibliography

Tracking in Virtual Reality Training,” Informatics, vol. 8, no. 3, p. 60–61, Sep.
2021, doi: 10.3390/informatics8030060.

[81] S. Kapsoritakis, “A comparative study of virtual reality hand-tracking and con-
trollers.” Accessed: Aug. 20, 2024. [Online]. Available: http://www.theseus.fi/
handle/10024/754933

[82] “Leap Motion Controller 2 - Ultraleap.” Accessed: Aug. 21, 2024. [Online]. Avail-
able: https://leap2.ultraleap.com/products/leap-motion-controller-2/

[83] A. Hamelin and E. Dubois, “Design and evaluation of an interaction technique
for volume selection in a 3D point cloud,” in Proceedings of the 27th Conference
on l'Interaction Homme-Machine, in IHM '15. New York, NY, USA: Association
for Computing Machinery, 2015, pp. 1–10. doi: 10.1145/2820619.2820622.

[84] A. Olwal, H. Benko, and S. Feiner, “SenseShapes: using statistical geometry for
object selection in a multimodal augmented reality,” in The Second IEEE and ACM
International Symposium on Mixed and Augmented Reality, 2003. Proceedings.,
Oct. 2003, pp. 300–301. doi: 10.1109/ISMAR.2003.1240730.

[85] H. Benko and S. Feiner, “Balloon Selection: A Multi-Finger Technique for Accu-
rate Low-Fatigue 3D Selection,” in 2007 IEEE Symposium on 3D User Interfaces,
Mar. 2007. doi: 10.1109/3DUI.2007.340778.

[86] D. Akers, A. Sherbondy, R. Mackenzie, R. Dougherty, and B. Wandell, “800Ex-
ploration of the brain's white matter pathways with dynamic queries,” in IEEE
Visualization 2004, Oct. 2004, pp. 377–384. doi: 10.1109/VISUAL.2004.30.

[87] “PLY - Polygon File Format.” Accessed: Aug. 21, 2024. [Online]. Available:
https://paulbourke.net/dataformats/ply/

[88] K. Takahashi, “keijiro/Pcx.” Accessed: Aug. 21, 2024. [Online]. Available: https://
github.com/keijiro/Pcx

[89] “Comma-separated values.” Accessed: Aug. 21, 2024. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Comma-separated_values&oldid=
1237715653

[90] T. Conte, “The Midas Touch effect: the most unknown phenome-
non in UX design.” Accessed: Aug. 20, 2024. [Online]. Available:
https://uxdesign.cc/the-midas-touch-effect-the-most-unknown-phenomenon-
in-ux-design-36827204edd

[91] “Universität Düsseldorf: G*Power.” Accessed: Aug. 14, 2024. [Online]. Available:
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-
arbeitspsychologie/gpower

61

https://doi.org/10.3390/informatics8030060
http://www.theseus.fi/handle/10024/754933
http://www.theseus.fi/handle/10024/754933
https://leap2.ultraleap.com/products/leap-motion-controller-2/
https://doi.org/10.1145/2820619.2820622
https://doi.org/10.1109/ISMAR.2003.1240730
https://doi.org/10.1109/3DUI.2007.340778
https://doi.org/10.1109/VISUAL.2004.30
https://paulbourke.net/dataformats/ply/
https://github.com/keijiro/Pcx
https://github.com/keijiro/Pcx
https://en.wikipedia.org/w/index.php?title=Comma-separated_values&oldid=1237715653
https://en.wikipedia.org/w/index.php?title=Comma-separated_values&oldid=1237715653
https://uxdesign.cc/the-midas-touch-effect-the-most-unknown-phenomenon-in-ux-design-36827204edd
https://uxdesign.cc/the-midas-touch-effect-the-most-unknown-phenomenon-in-ux-design-36827204edd
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower

Bibliography

[92] R. N. Shepard and J. Metzler, “Mental Rotation of Three-Dimensional Ob-
jects,” Science, vol. 171, no. 3972, pp. 701–703, Feb. 1971, doi: 10.1126/
science.171.3972.701.

[93] A. Ambühl, L. Fluri, C. Zucker, A. Goodman, and A. Cöltekin, “Effectiveness and
perceived usefulness of a handheld ar cube for examining 3d spatial structures,”
in SpaceCHI Workshop at the CHI2022, 2022.

[94] Artec3D, “Human skeleton HD | Free 3D model | Professional 3D scanning solu-
tions.” Accessed: Aug. 05, 2024. [Online]. Available: https://www.artec3d.com/3
d-models/human-skeleton-hd

[95] T. J. O'Neill, C. Zucker, A. A. Goodman, and G. Edenhofer, “The Local Bubble is
a Local Chimney: A New Model from 3D Dust Mapping.” Accessed: Jul. 29, 2024.
[Online]. Available: https://ui.adsabs.harvard.edu/abs/2024arXiv240304961O

[96] T. O'Neill, “Local Bubble is a Local Chimney.” Accessed: Jul. 29, 2024. [Online].
Available: https://theo-oneill.github.io/localbubble/

[97] “Posit.” Accessed: Aug. 15, 2024. [Online]. Available: https://www.posit.co/

[98] R. A. Montano-Murillo, C. Nguyen, R. H. Kazi, S. Subramanian, S. DiVerdi,
and D. Martinez-Plasencia, “Slicing-Volume: Hybrid 3D/2D Multi-target Selec-
tion Technique for Dense Virtual Environments,” in 2020 IEEE Conference on
Virtual Reality and 3D User Interfaces (VR), Mar. 2020, pp. 53–62. doi: 10.1109/
VR46266.2020.00023.

[99] W. Zhou, S. Correia, and D. H. Laidlaw, “Haptics-Assisted 3D Lasso Drawing
for Tracts-of-interest Selection in DTI Visualization.”

[100] M. Hegarty, “Ability and sex differences in spatial thinking: What does the men-
tal rotation test really measure?,” Psychonomic Bulletin & Review, vol. 25, no. 3,
pp. 1212–1219, Jun. 2018, doi: 10.3758/s13423-017-1347-z.

[101] M. S. Masters and B. Sanders, “Is the gender difference in mental rotation dis-
appearing?,” Behavior Genetics, vol. 23, no. 4, pp. 337–341, Jul. 1993, doi: 10.1007/
BF01067434.

[102] Z. Estes and S. Felker, “Confidence Mediates the Sex Difference in Mental Rota-
tion Performance,” Archives of Sexual Behavior, vol. 41, no. 3, pp. 557–570, Jun.
2012, doi: 10.1007/s10508-011-9875-5.

[103] R. Ariel, N. A. Lembeck, S. Moffat, and C. Hertzog, “Are there sex differences
in confidence and metacognitive monitoring accuracy for everyday, academic,
and psychometrically measured spatial ability?,” Intelligence, vol. 70, pp. 42–51,
Sep. 2018, doi: 10.1016/j.intell.2018.08.001.

62

https://doi.org/10.1126/science.171.3972.701
https://doi.org/10.1126/science.171.3972.701
https://www.artec3d.com/3d-models/human-skeleton-hd
https://www.artec3d.com/3d-models/human-skeleton-hd
https://ui.adsabs.harvard.edu/abs/2024arXiv240304961O
https://theo-oneill.github.io/localbubble/
https://www.posit.co/
https://doi.org/10.1109/VR46266.2020.00023
https://doi.org/10.1109/VR46266.2020.00023
https://doi.org/10.3758/s13423-017-1347-z
https://doi.org/10.1007/BF01067434
https://doi.org/10.1007/BF01067434
https://doi.org/10.1007/s10508-011-9875-5
https://doi.org/10.1016/j.intell.2018.08.001

Bibliography

[104] “ShapesXR — Spatial design and prototyping platform for teams.” Accessed:
Aug. 21, 2024. [Online]. Available: https://www.shapesxr.com/

[105] A. Prouzeau, M. Cordeil, C. Robin, B. Ens, B. H. Thomas, and T. Dwyer, “Scaptics
and Highlight-Planes: Immersive Interaction Techniques for Finding Occluded
Features in 3D Scatterplots,” in Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, in CHI '19. New York, NY, USA: Association for
Computing Machinery, May 2019, pp. 1–12. doi: 10.1145/3290605.3300555.

[106] R. Kopper, F. Bacim, and D. A. Bowman, “Rapid and accurate 3D selection by
progressive refinement,” in 2011 IEEE Symposium on 3D User Interfaces (3DUI),
Mar. 2011, pp. 67–74. doi: 10.1109/3DUI.2011.5759219.

63

https://www.shapesxr.com/
https://doi.org/10.1145/3290605.3300555
https://doi.org/10.1109/3DUI.2011.5759219

Appendix

Appendix
Source Code

All code for the Unity application is hosted on the local FHNW Gitlab server at this
address:

https://gitlab.fhnw.ch/iit/mse/luca_fluri_p7-p9_2022-2024/p9_hand-tracked_3d_data_
selection_of_point_clouds_in_xr_2024

In case you have no access to repository, please contact me at luca.fluri@fhnw.ch

Evaluation

Results

Raw data and results from the user experiment are available upon request from
luca.fluri@fhnw.ch

Pre-Questionnaire

64

https://gitlab.fhnw.ch/iit/mse/luca_fluri_p7-p9_2022-2024/p9_hand-tracked_3d_data_selection_of_point_clouds_in_xr_2024
https://gitlab.fhnw.ch/iit/mse/luca_fluri_p7-p9_2022-2024/p9_hand-tracked_3d_data_selection_of_point_clouds_in_xr_2024
https://gitlab.fhnw.ch/iit/mse/luca_fluri_p7-p9_2022-2024/p9_hand-tracked_3d_data_selection_of_point_clouds_in_xr_2024
https://gitlab.fhnw.ch/iit/mse/luca_fluri_p7-p9_2022-2024/p9_hand-tracked_3d_data_selection_of_point_clouds_in_xr_2024
mailto:luca.fluri@fhnw.ch
mailto:luca.fluri@fhnw.ch

Appendix Pre-Questionnaire

65

Appendix Pre-Questionnaire

Post-Questionnaire

66

Appendix Post-Questionnaire

67

Appendix Post-Questionnaire

68

Appendix Post-Questionnaire

69

	Table of Contents
	Introduction
	Related Work
	Extended Reality
	Point Cloud Rendering
	Signed Distance Fields
	3D Selection Techniques
	User Studies

	Prototype
	Methods and Concept
	Implementation
	Selection Handling
	SDF Generation

	Point Cloud Rendering
	User Interaction
	Hand Menu
	Point Cloud Transformations
	Selection Techniques

	Evaluation Methods
	Computational Performance
	User Experiment
	Participants
	Materials
	Tasks

	Procedure
	Data Collection and Resesarch Design
	Data Diagnostics and Analysis

	Results
	Computational Performance
	User Experiment

	Discussion
	Limitations
	Future Work

	Conclusion
	Bibliography
	Appendix
	Source Code
	Evaluation
	Results
	Pre-Questionnaire
	Post-Questionnaire

